structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,165 @@
import types
from typing import Any, Dict, List, Optional
from openai.types.image import Image
from litellm.types.llms.bedrock import (
AmazonNovaCanvasColorGuidedGenerationParams,
AmazonNovaCanvasColorGuidedRequest,
AmazonNovaCanvasImageGenerationConfig,
AmazonNovaCanvasRequestBase,
AmazonNovaCanvasTextToImageParams,
AmazonNovaCanvasTextToImageRequest,
AmazonNovaCanvasTextToImageResponse,
)
from litellm.types.utils import ImageResponse
class AmazonNovaCanvasConfig:
"""
Reference: https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/model-catalog/serverless/amazon.nova-canvas-v1:0
"""
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
@classmethod
def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
""" """
return ["n", "size", "quality"]
@classmethod
def _is_nova_model(cls, model: Optional[str] = None) -> bool:
"""
Returns True if the model is a Nova Canvas model
Nova models follow this pattern:
"""
if model:
if "amazon.nova-canvas" in model:
return True
return False
@classmethod
def transform_request_body(
cls, text: str, optional_params: dict
) -> AmazonNovaCanvasRequestBase:
"""
Transform the request body for Amazon Nova Canvas model
"""
task_type = optional_params.pop("taskType", "TEXT_IMAGE")
image_generation_config = optional_params.pop("imageGenerationConfig", {})
image_generation_config = {**image_generation_config, **optional_params}
if task_type == "TEXT_IMAGE":
text_to_image_params: Dict[str, Any] = image_generation_config.pop(
"textToImageParams", {}
)
text_to_image_params = {"text": text, **text_to_image_params}
try:
text_to_image_params_typed = AmazonNovaCanvasTextToImageParams(
**text_to_image_params # type: ignore
)
except Exception as e:
raise ValueError(
f"Error transforming text to image params: {e}. Got params: {text_to_image_params}, Expected params: {AmazonNovaCanvasTextToImageParams.__annotations__}"
)
try:
image_generation_config_typed = AmazonNovaCanvasImageGenerationConfig(
**image_generation_config
)
except Exception as e:
raise ValueError(
f"Error transforming image generation config: {e}. Got params: {image_generation_config}, Expected params: {AmazonNovaCanvasImageGenerationConfig.__annotations__}"
)
return AmazonNovaCanvasTextToImageRequest(
textToImageParams=text_to_image_params_typed,
taskType=task_type,
imageGenerationConfig=image_generation_config_typed,
)
if task_type == "COLOR_GUIDED_GENERATION":
color_guided_generation_params: Dict[
str, Any
] = image_generation_config.pop("colorGuidedGenerationParams", {})
color_guided_generation_params = {
"text": text,
**color_guided_generation_params,
}
try:
color_guided_generation_params_typed = AmazonNovaCanvasColorGuidedGenerationParams(
**color_guided_generation_params # type: ignore
)
except Exception as e:
raise ValueError(
f"Error transforming color guided generation params: {e}. Got params: {color_guided_generation_params}, Expected params: {AmazonNovaCanvasColorGuidedGenerationParams.__annotations__}"
)
try:
image_generation_config_typed = AmazonNovaCanvasImageGenerationConfig(
**image_generation_config
)
except Exception as e:
raise ValueError(
f"Error transforming image generation config: {e}. Got params: {image_generation_config}, Expected params: {AmazonNovaCanvasImageGenerationConfig.__annotations__}"
)
return AmazonNovaCanvasColorGuidedRequest(
taskType=task_type,
colorGuidedGenerationParams=color_guided_generation_params_typed,
imageGenerationConfig=image_generation_config_typed,
)
raise NotImplementedError(f"Task type {task_type} is not supported")
@classmethod
def map_openai_params(cls, non_default_params: dict, optional_params: dict) -> dict:
"""
Map the OpenAI params to the Bedrock params
"""
_size = non_default_params.get("size")
if _size is not None:
width, height = _size.split("x")
optional_params["width"], optional_params["height"] = int(width), int(
height
)
if non_default_params.get("n") is not None:
optional_params["numberOfImages"] = non_default_params.get("n")
if non_default_params.get("quality") is not None:
if non_default_params.get("quality") in ("hd", "premium"):
optional_params["quality"] = "premium"
if non_default_params.get("quality") == "standard":
optional_params["quality"] = "standard"
return optional_params
@classmethod
def transform_response_dict_to_openai_response(
cls, model_response: ImageResponse, response_dict: dict
) -> ImageResponse:
"""
Transform the response dict to the OpenAI response
"""
nova_response = AmazonNovaCanvasTextToImageResponse(**response_dict)
openai_images: List[Image] = []
for _img in nova_response.get("images", []):
openai_images.append(Image(b64_json=_img))
model_response.data = openai_images
return model_response

View File

@@ -0,0 +1,104 @@
import types
from typing import List, Optional
from openai.types.image import Image
from litellm.types.utils import ImageResponse
class AmazonStabilityConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
Supported Params for the Amazon / Stable Diffusion models:
- `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
- `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed)
- `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run.
- `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64.
Engine-specific dimension validation:
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
- SDXL v1.0: same as SDXL v0.9
- SD v1.6: must be between 320x320 and 1536x1536
- `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64.
Engine-specific dimension validation:
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
- SDXL v1.0: same as SDXL v0.9
- SD v1.6: must be between 320x320 and 1536x1536
"""
cfg_scale: Optional[int] = None
seed: Optional[float] = None
steps: Optional[List[str]] = None
width: Optional[int] = None
height: Optional[int] = None
def __init__(
self,
cfg_scale: Optional[int] = None,
seed: Optional[float] = None,
steps: Optional[List[str]] = None,
width: Optional[int] = None,
height: Optional[int] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
@classmethod
def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
return ["size"]
@classmethod
def map_openai_params(
cls,
non_default_params: dict,
optional_params: dict,
):
_size = non_default_params.get("size")
if _size is not None:
width, height = _size.split("x")
optional_params["width"] = int(width)
optional_params["height"] = int(height)
return optional_params
@classmethod
def transform_response_dict_to_openai_response(
cls, model_response: ImageResponse, response_dict: dict
) -> ImageResponse:
image_list: List[Image] = []
for artifact in response_dict["artifacts"]:
_image = Image(b64_json=artifact["base64"])
image_list.append(_image)
model_response.data = image_list
return model_response

View File

@@ -0,0 +1,100 @@
import types
from typing import List, Optional
from openai.types.image import Image
from litellm.types.llms.bedrock import (
AmazonStability3TextToImageRequest,
AmazonStability3TextToImageResponse,
)
from litellm.types.utils import ImageResponse
class AmazonStability3Config:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
Stability API Ref: https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post
"""
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
@classmethod
def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
"""
No additional OpenAI params are mapped for stability 3
"""
return []
@classmethod
def _is_stability_3_model(cls, model: Optional[str] = None) -> bool:
"""
Returns True if the model is a Stability 3 model
Stability 3 models follow this pattern:
sd3-large
sd3-large-turbo
sd3-medium
sd3.5-large
sd3.5-large-turbo
Stability ultra models
stable-image-ultra-v1
"""
if model:
if "sd3" in model or "sd3.5" in model:
return True
if "stable-image-ultra-v1" in model:
return True
return False
@classmethod
def transform_request_body(
cls, prompt: str, optional_params: dict
) -> AmazonStability3TextToImageRequest:
"""
Transform the request body for the Stability 3 models
"""
data = AmazonStability3TextToImageRequest(prompt=prompt, **optional_params)
return data
@classmethod
def map_openai_params(cls, non_default_params: dict, optional_params: dict) -> dict:
"""
Map the OpenAI params to the Bedrock params
No OpenAI params are mapped for Stability 3, so directly return the optional_params
"""
return optional_params
@classmethod
def transform_response_dict_to_openai_response(
cls, model_response: ImageResponse, response_dict: dict
) -> ImageResponse:
"""
Transform the response dict to the OpenAI response
"""
stability_3_response = AmazonStability3TextToImageResponse(**response_dict)
openai_images: List[Image] = []
for _img in stability_3_response.get("images", []):
openai_images.append(Image(b64_json=_img))
model_response.data = openai_images
return model_response

View File

@@ -0,0 +1,41 @@
from typing import Optional
import litellm
from litellm.types.utils import ImageResponse
def cost_calculator(
model: str,
image_response: ImageResponse,
size: Optional[str] = None,
optional_params: Optional[dict] = None,
) -> float:
"""
Bedrock image generation cost calculator
Handles both Stability 1 and Stability 3 models
"""
if litellm.AmazonStability3Config()._is_stability_3_model(model=model):
pass
else:
# Stability 1 models
optional_params = optional_params or {}
# see model_prices_and_context_window.json for details on how steps is used
# Reference pricing by steps for stability 1: https://aws.amazon.com/bedrock/pricing/
_steps = optional_params.get("steps", 50)
steps = "max-steps" if _steps > 50 else "50-steps"
# size is stored in model_prices_and_context_window.json as 1024-x-1024
# current size has 1024x1024
size = size or "1024-x-1024"
model = f"{size}/{steps}/{model}"
_model_info = litellm.get_model_info(
model=model,
custom_llm_provider="bedrock",
)
output_cost_per_image: float = _model_info.get("output_cost_per_image") or 0.0
num_images: int = len(image_response.data)
return output_cost_per_image * num_images

View File

@@ -0,0 +1,321 @@
import copy
import json
import os
from typing import TYPE_CHECKING, Any, Optional, Union
import httpx
from pydantic import BaseModel
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LitellmLogging
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
get_async_httpx_client,
)
from litellm.types.utils import ImageResponse
from ..base_aws_llm import BaseAWSLLM
from ..common_utils import BedrockError
if TYPE_CHECKING:
from botocore.awsrequest import AWSPreparedRequest
else:
AWSPreparedRequest = Any
class BedrockImagePreparedRequest(BaseModel):
"""
Internal/Helper class for preparing the request for bedrock image generation
"""
endpoint_url: str
prepped: AWSPreparedRequest
body: bytes
data: dict
class BedrockImageGeneration(BaseAWSLLM):
"""
Bedrock Image Generation handler
"""
def image_generation(
self,
model: str,
prompt: str,
model_response: ImageResponse,
optional_params: dict,
logging_obj: LitellmLogging,
timeout: Optional[Union[float, httpx.Timeout]],
aimg_generation: bool = False,
api_base: Optional[str] = None,
extra_headers: Optional[dict] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
prepared_request = self._prepare_request(
model=model,
optional_params=optional_params,
api_base=api_base,
extra_headers=extra_headers,
logging_obj=logging_obj,
prompt=prompt,
)
if aimg_generation is True:
return self.async_image_generation(
prepared_request=prepared_request,
timeout=timeout,
model=model,
logging_obj=logging_obj,
prompt=prompt,
model_response=model_response,
client=(
client
if client is not None and isinstance(client, AsyncHTTPHandler)
else None
),
)
if client is None or not isinstance(client, HTTPHandler):
client = _get_httpx_client()
try:
response = client.post(url=prepared_request.endpoint_url, headers=prepared_request.prepped.headers, data=prepared_request.body) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise BedrockError(status_code=error_code, message=err.response.text)
except httpx.TimeoutException:
raise BedrockError(status_code=408, message="Timeout error occurred.")
### FORMAT RESPONSE TO OPENAI FORMAT ###
model_response = self._transform_response_dict_to_openai_response(
model_response=model_response,
model=model,
logging_obj=logging_obj,
prompt=prompt,
response=response,
data=prepared_request.data,
)
return model_response
async def async_image_generation(
self,
prepared_request: BedrockImagePreparedRequest,
timeout: Optional[Union[float, httpx.Timeout]],
model: str,
logging_obj: LitellmLogging,
prompt: str,
model_response: ImageResponse,
client: Optional[AsyncHTTPHandler] = None,
) -> ImageResponse:
"""
Asynchronous handler for bedrock image generation
Awaits the response from the bedrock image generation endpoint
"""
async_client = client or get_async_httpx_client(
llm_provider=litellm.LlmProviders.BEDROCK,
params={"timeout": timeout},
)
try:
response = await async_client.post(url=prepared_request.endpoint_url, headers=prepared_request.prepped.headers, data=prepared_request.body) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise BedrockError(status_code=error_code, message=err.response.text)
except httpx.TimeoutException:
raise BedrockError(status_code=408, message="Timeout error occurred.")
### FORMAT RESPONSE TO OPENAI FORMAT ###
model_response = self._transform_response_dict_to_openai_response(
model=model,
logging_obj=logging_obj,
prompt=prompt,
response=response,
data=prepared_request.data,
model_response=model_response,
)
return model_response
def _prepare_request(
self,
model: str,
optional_params: dict,
api_base: Optional[str],
extra_headers: Optional[dict],
logging_obj: LitellmLogging,
prompt: str,
) -> BedrockImagePreparedRequest:
"""
Prepare the request body, headers, and endpoint URL for the Bedrock Image Generation API
Args:
model (str): The model to use for the image generation
optional_params (dict): The optional parameters for the image generation
api_base (Optional[str]): The base URL for the Bedrock API
extra_headers (Optional[dict]): The extra headers to include in the request
logging_obj (LitellmLogging): The logging object to use for logging
prompt (str): The prompt to use for the image generation
Returns:
BedrockImagePreparedRequest: The prepared request object
The BedrockImagePreparedRequest contains:
endpoint_url (str): The endpoint URL for the Bedrock Image Generation API
prepped (httpx.Request): The prepared request object
body (bytes): The request body
"""
try:
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
boto3_credentials_info = self._get_boto_credentials_from_optional_params(
optional_params, model
)
### SET RUNTIME ENDPOINT ###
modelId = model
_, proxy_endpoint_url = self.get_runtime_endpoint(
api_base=api_base,
aws_bedrock_runtime_endpoint=boto3_credentials_info.aws_bedrock_runtime_endpoint,
aws_region_name=boto3_credentials_info.aws_region_name,
)
proxy_endpoint_url = f"{proxy_endpoint_url}/model/{modelId}/invoke"
sigv4 = SigV4Auth(
boto3_credentials_info.credentials,
"bedrock",
boto3_credentials_info.aws_region_name,
)
data = self._get_request_body(
model=model, prompt=prompt, optional_params=optional_params
)
# Make POST Request
body = json.dumps(data).encode("utf-8")
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=proxy_endpoint_url, data=body, headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped = request.prepare()
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"api_base": proxy_endpoint_url,
"headers": prepped.headers,
},
)
return BedrockImagePreparedRequest(
endpoint_url=proxy_endpoint_url,
prepped=prepped,
body=body,
data=data,
)
def _get_request_body(
self,
model: str,
prompt: str,
optional_params: dict,
) -> dict:
"""
Get the request body for the Bedrock Image Generation API
Checks the model/provider and transforms the request body accordingly
Returns:
dict: The request body to use for the Bedrock Image Generation API
"""
provider = model.split(".")[0]
inference_params = copy.deepcopy(optional_params)
inference_params.pop(
"user", None
) # make sure user is not passed in for bedrock call
data = {}
if provider == "stability":
if litellm.AmazonStability3Config._is_stability_3_model(model):
request_body = litellm.AmazonStability3Config.transform_request_body(
prompt=prompt, optional_params=optional_params
)
return dict(request_body)
else:
prompt = prompt.replace(os.linesep, " ")
## LOAD CONFIG
config = litellm.AmazonStabilityConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = {
"text_prompts": [{"text": prompt, "weight": 1}],
**inference_params,
}
elif provider == "amazon":
return dict(
litellm.AmazonNovaCanvasConfig.transform_request_body(
text=prompt, optional_params=optional_params
)
)
else:
raise BedrockError(
status_code=422, message=f"Unsupported model={model}, passed in"
)
return data
def _transform_response_dict_to_openai_response(
self,
model_response: ImageResponse,
model: str,
logging_obj: LitellmLogging,
prompt: str,
response: httpx.Response,
data: dict,
) -> ImageResponse:
"""
Transforms the Image Generation response from Bedrock to OpenAI format
"""
## LOGGING
if logging_obj is not None:
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response.text,
additional_args={"complete_input_dict": data},
)
verbose_logger.debug("raw model_response: %s", response.text)
response_dict = response.json()
if response_dict is None:
raise ValueError("Error in response object format, got None")
config_class = (
litellm.AmazonStability3Config
if litellm.AmazonStability3Config._is_stability_3_model(model=model)
else (
litellm.AmazonNovaCanvasConfig
if litellm.AmazonNovaCanvasConfig._is_nova_model(model=model)
else litellm.AmazonStabilityConfig
)
)
config_class.transform_response_dict_to_openai_response(
model_response=model_response,
response_dict=response_dict,
)
return model_response