structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,88 @@
|
||||
"""
|
||||
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan G1 /invoke format.
|
||||
|
||||
Why separate file? Make it easy to see how transformation works
|
||||
|
||||
Convers
|
||||
- G1 request format
|
||||
|
||||
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import List
|
||||
|
||||
from litellm.types.llms.bedrock import (
|
||||
AmazonTitanG1EmbeddingRequest,
|
||||
AmazonTitanG1EmbeddingResponse,
|
||||
)
|
||||
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
|
||||
|
||||
|
||||
class AmazonTitanG1Config:
|
||||
"""
|
||||
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self) -> List[str]:
|
||||
return []
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
return optional_params
|
||||
|
||||
def _transform_request(
|
||||
self, input: str, inference_params: dict
|
||||
) -> AmazonTitanG1EmbeddingRequest:
|
||||
return AmazonTitanG1EmbeddingRequest(inputText=input)
|
||||
|
||||
def _transform_response(
|
||||
self, response_list: List[dict], model: str
|
||||
) -> EmbeddingResponse:
|
||||
total_prompt_tokens = 0
|
||||
|
||||
transformed_responses: List[Embedding] = []
|
||||
for index, response in enumerate(response_list):
|
||||
_parsed_response = AmazonTitanG1EmbeddingResponse(**response) # type: ignore
|
||||
transformed_responses.append(
|
||||
Embedding(
|
||||
embedding=_parsed_response["embedding"],
|
||||
index=index,
|
||||
object="embedding",
|
||||
)
|
||||
)
|
||||
total_prompt_tokens += _parsed_response["inputTextTokenCount"]
|
||||
|
||||
usage = Usage(
|
||||
prompt_tokens=total_prompt_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=total_prompt_tokens,
|
||||
)
|
||||
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)
|
||||
@@ -0,0 +1,79 @@
|
||||
"""
|
||||
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan multimodal /invoke format.
|
||||
|
||||
Why separate file? Make it easy to see how transformation works
|
||||
|
||||
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
from litellm.types.llms.bedrock import (
|
||||
AmazonTitanMultimodalEmbeddingConfig,
|
||||
AmazonTitanMultimodalEmbeddingRequest,
|
||||
AmazonTitanMultimodalEmbeddingResponse,
|
||||
)
|
||||
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
|
||||
from litellm.utils import get_base64_str, is_base64_encoded
|
||||
|
||||
|
||||
class AmazonTitanMultimodalEmbeddingG1Config:
|
||||
"""
|
||||
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def get_supported_openai_params(self) -> List[str]:
|
||||
return ["dimensions"]
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "dimensions":
|
||||
optional_params[
|
||||
"embeddingConfig"
|
||||
] = AmazonTitanMultimodalEmbeddingConfig(outputEmbeddingLength=v)
|
||||
return optional_params
|
||||
|
||||
def _transform_request(
|
||||
self, input: str, inference_params: dict
|
||||
) -> AmazonTitanMultimodalEmbeddingRequest:
|
||||
## check if b64 encoded str or not ##
|
||||
is_encoded = is_base64_encoded(input)
|
||||
if is_encoded: # check if string is b64 encoded image or not
|
||||
b64_str = get_base64_str(input)
|
||||
transformed_request = AmazonTitanMultimodalEmbeddingRequest(
|
||||
inputImage=b64_str
|
||||
)
|
||||
else:
|
||||
transformed_request = AmazonTitanMultimodalEmbeddingRequest(inputText=input)
|
||||
|
||||
for k, v in inference_params.items():
|
||||
transformed_request[k] = v # type: ignore
|
||||
return transformed_request
|
||||
|
||||
def _transform_response(
|
||||
self, response_list: List[dict], model: str
|
||||
) -> EmbeddingResponse:
|
||||
total_prompt_tokens = 0
|
||||
transformed_responses: List[Embedding] = []
|
||||
for index, response in enumerate(response_list):
|
||||
_parsed_response = AmazonTitanMultimodalEmbeddingResponse(**response) # type: ignore
|
||||
transformed_responses.append(
|
||||
Embedding(
|
||||
embedding=_parsed_response["embedding"],
|
||||
index=index,
|
||||
object="embedding",
|
||||
)
|
||||
)
|
||||
total_prompt_tokens += _parsed_response["inputTextTokenCount"]
|
||||
|
||||
usage = Usage(
|
||||
prompt_tokens=total_prompt_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=total_prompt_tokens,
|
||||
)
|
||||
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)
|
||||
@@ -0,0 +1,97 @@
|
||||
"""
|
||||
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan V2 /invoke format.
|
||||
|
||||
Why separate file? Make it easy to see how transformation works
|
||||
|
||||
Convers
|
||||
- v2 request format
|
||||
|
||||
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import List, Optional
|
||||
|
||||
from litellm.types.llms.bedrock import (
|
||||
AmazonTitanV2EmbeddingRequest,
|
||||
AmazonTitanV2EmbeddingResponse,
|
||||
)
|
||||
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
|
||||
|
||||
|
||||
class AmazonTitanV2Config:
|
||||
"""
|
||||
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
|
||||
|
||||
normalize: boolean - flag indicating whether or not to normalize the output embeddings. Defaults to true
|
||||
dimensions: int - The number of dimensions the output embeddings should have. The following values are accepted: 1024 (default), 512, 256.
|
||||
"""
|
||||
|
||||
normalize: Optional[bool] = None
|
||||
dimensions: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self, normalize: Optional[bool] = None, dimensions: Optional[int] = None
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self) -> List[str]:
|
||||
return ["dimensions"]
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "dimensions":
|
||||
optional_params["dimensions"] = v
|
||||
return optional_params
|
||||
|
||||
def _transform_request(
|
||||
self, input: str, inference_params: dict
|
||||
) -> AmazonTitanV2EmbeddingRequest:
|
||||
return AmazonTitanV2EmbeddingRequest(inputText=input, **inference_params) # type: ignore
|
||||
|
||||
def _transform_response(
|
||||
self, response_list: List[dict], model: str
|
||||
) -> EmbeddingResponse:
|
||||
total_prompt_tokens = 0
|
||||
|
||||
transformed_responses: List[Embedding] = []
|
||||
for index, response in enumerate(response_list):
|
||||
_parsed_response = AmazonTitanV2EmbeddingResponse(**response) # type: ignore
|
||||
transformed_responses.append(
|
||||
Embedding(
|
||||
embedding=_parsed_response["embedding"],
|
||||
index=index,
|
||||
object="embedding",
|
||||
)
|
||||
)
|
||||
total_prompt_tokens += _parsed_response["inputTextTokenCount"]
|
||||
|
||||
usage = Usage(
|
||||
prompt_tokens=total_prompt_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=total_prompt_tokens,
|
||||
)
|
||||
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)
|
||||
@@ -0,0 +1,45 @@
|
||||
"""
|
||||
Transformation logic from OpenAI /v1/embeddings format to Bedrock Cohere /invoke format.
|
||||
|
||||
Why separate file? Make it easy to see how transformation works
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
from litellm.llms.cohere.embed.transformation import CohereEmbeddingConfig
|
||||
from litellm.types.llms.bedrock import CohereEmbeddingRequest
|
||||
|
||||
|
||||
class BedrockCohereEmbeddingConfig:
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def get_supported_openai_params(self) -> List[str]:
|
||||
return ["encoding_format"]
|
||||
|
||||
def map_openai_params(
|
||||
self, non_default_params: dict, optional_params: dict
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "encoding_format":
|
||||
optional_params["embedding_types"] = v
|
||||
return optional_params
|
||||
|
||||
def _is_v3_model(self, model: str) -> bool:
|
||||
return "3" in model
|
||||
|
||||
def _transform_request(
|
||||
self, model: str, input: List[str], inference_params: dict
|
||||
) -> CohereEmbeddingRequest:
|
||||
transformed_request = CohereEmbeddingConfig()._transform_request(
|
||||
model, input, inference_params
|
||||
)
|
||||
|
||||
new_transformed_request = CohereEmbeddingRequest(
|
||||
input_type=transformed_request["input_type"],
|
||||
)
|
||||
for k in CohereEmbeddingRequest.__annotations__.keys():
|
||||
if k in transformed_request:
|
||||
new_transformed_request[k] = transformed_request[k] # type: ignore
|
||||
|
||||
return new_transformed_request
|
||||
@@ -0,0 +1,480 @@
|
||||
"""
|
||||
Handles embedding calls to Bedrock's `/invoke` endpoint
|
||||
"""
|
||||
|
||||
import copy
|
||||
import json
|
||||
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.cohere.embed.handler import embedding as cohere_embedding
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
_get_httpx_client,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.secret_managers.main import get_secret
|
||||
from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest
|
||||
from litellm.types.utils import EmbeddingResponse
|
||||
|
||||
from ..base_aws_llm import BaseAWSLLM
|
||||
from ..common_utils import BedrockError
|
||||
from .amazon_titan_g1_transformation import AmazonTitanG1Config
|
||||
from .amazon_titan_multimodal_transformation import (
|
||||
AmazonTitanMultimodalEmbeddingG1Config,
|
||||
)
|
||||
from .amazon_titan_v2_transformation import AmazonTitanV2Config
|
||||
from .cohere_transformation import BedrockCohereEmbeddingConfig
|
||||
|
||||
|
||||
class BedrockEmbedding(BaseAWSLLM):
|
||||
def _load_credentials(
|
||||
self,
|
||||
optional_params: dict,
|
||||
) -> Tuple[Any, str]:
|
||||
try:
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
## CREDENTIALS ##
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
aws_session_token = optional_params.pop("aws_session_token", None)
|
||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
||||
|
||||
### SET REGION NAME ###
|
||||
if aws_region_name is None:
|
||||
# check env #
|
||||
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
||||
|
||||
if litellm_aws_region_name is not None and isinstance(
|
||||
litellm_aws_region_name, str
|
||||
):
|
||||
aws_region_name = litellm_aws_region_name
|
||||
|
||||
standard_aws_region_name = get_secret("AWS_REGION", None)
|
||||
if standard_aws_region_name is not None and isinstance(
|
||||
standard_aws_region_name, str
|
||||
):
|
||||
aws_region_name = standard_aws_region_name
|
||||
|
||||
if aws_region_name is None:
|
||||
aws_region_name = "us-west-2"
|
||||
|
||||
credentials: Credentials = self.get_credentials(
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_session_token=aws_session_token,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_session_name=aws_session_name,
|
||||
aws_profile_name=aws_profile_name,
|
||||
aws_role_name=aws_role_name,
|
||||
aws_web_identity_token=aws_web_identity_token,
|
||||
aws_sts_endpoint=aws_sts_endpoint,
|
||||
)
|
||||
return credentials, aws_region_name
|
||||
|
||||
async def async_embeddings(self):
|
||||
pass
|
||||
|
||||
def _make_sync_call(
|
||||
self,
|
||||
client: Optional[HTTPHandler],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: dict,
|
||||
) -> dict:
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
client = _get_httpx_client(_params) # type: ignore
|
||||
else:
|
||||
client = client
|
||||
try:
|
||||
response = client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise BedrockError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
return response.json()
|
||||
|
||||
async def _make_async_call(
|
||||
self,
|
||||
client: Optional[AsyncHTTPHandler],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: dict,
|
||||
) -> dict:
|
||||
if client is None or not isinstance(client, AsyncHTTPHandler):
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
client = get_async_httpx_client(
|
||||
params=_params, llm_provider=litellm.LlmProviders.BEDROCK
|
||||
)
|
||||
else:
|
||||
client = client
|
||||
|
||||
try:
|
||||
response = await client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise BedrockError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
return response.json()
|
||||
|
||||
def _single_func_embeddings(
|
||||
self,
|
||||
client: Optional[HTTPHandler],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
batch_data: List[dict],
|
||||
credentials: Any,
|
||||
extra_headers: Optional[dict],
|
||||
endpoint_url: str,
|
||||
aws_region_name: str,
|
||||
model: str,
|
||||
logging_obj: Any,
|
||||
):
|
||||
try:
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
responses: List[dict] = []
|
||||
for data in batch_data:
|
||||
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
request = AWSRequest(
|
||||
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
prepped = request.prepare()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": prepped.url,
|
||||
"headers": prepped.headers,
|
||||
},
|
||||
)
|
||||
response = self._make_sync_call(
|
||||
client=client,
|
||||
timeout=timeout,
|
||||
api_base=prepped.url,
|
||||
headers=prepped.headers, # type: ignore
|
||||
data=data,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
responses.append(response)
|
||||
|
||||
returned_response: Optional[EmbeddingResponse] = None
|
||||
|
||||
## TRANSFORM RESPONSE ##
|
||||
if model == "amazon.titan-embed-image-v1":
|
||||
returned_response = (
|
||||
AmazonTitanMultimodalEmbeddingG1Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v1":
|
||||
returned_response = AmazonTitanG1Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v2:0":
|
||||
returned_response = AmazonTitanV2Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
|
||||
if returned_response is None:
|
||||
raise Exception(
|
||||
"Unable to map model response to known provider format. model={}".format(
|
||||
model
|
||||
)
|
||||
)
|
||||
|
||||
return returned_response
|
||||
|
||||
async def _async_single_func_embeddings(
|
||||
self,
|
||||
client: Optional[AsyncHTTPHandler],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
batch_data: List[dict],
|
||||
credentials: Any,
|
||||
extra_headers: Optional[dict],
|
||||
endpoint_url: str,
|
||||
aws_region_name: str,
|
||||
model: str,
|
||||
logging_obj: Any,
|
||||
):
|
||||
try:
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
responses: List[dict] = []
|
||||
for data in batch_data:
|
||||
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
request = AWSRequest(
|
||||
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
prepped = request.prepare()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": prepped.url,
|
||||
"headers": prepped.headers,
|
||||
},
|
||||
)
|
||||
response = await self._make_async_call(
|
||||
client=client,
|
||||
timeout=timeout,
|
||||
api_base=prepped.url,
|
||||
headers=prepped.headers, # type: ignore
|
||||
data=data,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
responses.append(response)
|
||||
|
||||
returned_response: Optional[EmbeddingResponse] = None
|
||||
|
||||
## TRANSFORM RESPONSE ##
|
||||
if model == "amazon.titan-embed-image-v1":
|
||||
returned_response = (
|
||||
AmazonTitanMultimodalEmbeddingG1Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v1":
|
||||
returned_response = AmazonTitanG1Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v2:0":
|
||||
returned_response = AmazonTitanV2Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
|
||||
if returned_response is None:
|
||||
raise Exception(
|
||||
"Unable to map model response to known provider format. model={}".format(
|
||||
model
|
||||
)
|
||||
)
|
||||
|
||||
return returned_response
|
||||
|
||||
def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: List[str],
|
||||
api_base: Optional[str],
|
||||
model_response: EmbeddingResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
aembedding: Optional[bool],
|
||||
extra_headers: Optional[dict],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
) -> EmbeddingResponse:
|
||||
try:
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
credentials, aws_region_name = self._load_credentials(optional_params)
|
||||
|
||||
### TRANSFORMATION ###
|
||||
provider = model.split(".")[0]
|
||||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params = {
|
||||
k: v
|
||||
for k, v in inference_params.items()
|
||||
if k.lower() not in self.aws_authentication_params
|
||||
}
|
||||
inference_params.pop(
|
||||
"user", None
|
||||
) # make sure user is not passed in for bedrock call
|
||||
modelId = (
|
||||
optional_params.pop("model_id", None) or model
|
||||
) # default to model if not passed
|
||||
|
||||
data: Optional[CohereEmbeddingRequest] = None
|
||||
batch_data: Optional[List] = None
|
||||
if provider == "cohere":
|
||||
data = BedrockCohereEmbeddingConfig()._transform_request(
|
||||
model=model, input=input, inference_params=inference_params
|
||||
)
|
||||
elif provider == "amazon" and model in [
|
||||
"amazon.titan-embed-image-v1",
|
||||
"amazon.titan-embed-text-v1",
|
||||
"amazon.titan-embed-text-v2:0",
|
||||
]:
|
||||
batch_data = []
|
||||
for i in input:
|
||||
if model == "amazon.titan-embed-image-v1":
|
||||
transformed_request: (
|
||||
AmazonEmbeddingRequest
|
||||
) = AmazonTitanMultimodalEmbeddingG1Config()._transform_request(
|
||||
input=i, inference_params=inference_params
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v1":
|
||||
transformed_request = AmazonTitanG1Config()._transform_request(
|
||||
input=i, inference_params=inference_params
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v2:0":
|
||||
transformed_request = AmazonTitanV2Config()._transform_request(
|
||||
input=i, inference_params=inference_params
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
"Unmapped model. Received={}. Expected={}".format(
|
||||
model,
|
||||
[
|
||||
"amazon.titan-embed-image-v1",
|
||||
"amazon.titan-embed-text-v1",
|
||||
"amazon.titan-embed-text-v2:0",
|
||||
],
|
||||
)
|
||||
)
|
||||
batch_data.append(transformed_request)
|
||||
|
||||
### SET RUNTIME ENDPOINT ###
|
||||
endpoint_url, proxy_endpoint_url = self.get_runtime_endpoint(
|
||||
api_base=api_base,
|
||||
aws_bedrock_runtime_endpoint=optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
),
|
||||
aws_region_name=aws_region_name,
|
||||
)
|
||||
endpoint_url = f"{endpoint_url}/model/{modelId}/invoke"
|
||||
|
||||
if batch_data is not None:
|
||||
if aembedding:
|
||||
return self._async_single_func_embeddings( # type: ignore
|
||||
client=(
|
||||
client
|
||||
if client is not None and isinstance(client, AsyncHTTPHandler)
|
||||
else None
|
||||
),
|
||||
timeout=timeout,
|
||||
batch_data=batch_data,
|
||||
credentials=credentials,
|
||||
extra_headers=extra_headers,
|
||||
endpoint_url=endpoint_url,
|
||||
aws_region_name=aws_region_name,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return self._single_func_embeddings(
|
||||
client=(
|
||||
client
|
||||
if client is not None and isinstance(client, HTTPHandler)
|
||||
else None
|
||||
),
|
||||
timeout=timeout,
|
||||
batch_data=batch_data,
|
||||
credentials=credentials,
|
||||
extra_headers=extra_headers,
|
||||
endpoint_url=endpoint_url,
|
||||
aws_region_name=aws_region_name,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
elif data is None:
|
||||
raise Exception("Unable to map Bedrock request to provider")
|
||||
|
||||
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
|
||||
request = AWSRequest(
|
||||
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
prepped = request.prepare()
|
||||
|
||||
## ROUTING ##
|
||||
return cohere_embedding(
|
||||
model=model,
|
||||
input=input,
|
||||
model_response=model_response,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
data=data, # type: ignore
|
||||
complete_api_base=prepped.url,
|
||||
api_key=None,
|
||||
aembedding=aembedding,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
headers=prepped.headers, # type: ignore
|
||||
)
|
||||
Reference in New Issue
Block a user