structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,88 @@
"""
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan G1 /invoke format.
Why separate file? Make it easy to see how transformation works
Convers
- G1 request format
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
"""
import types
from typing import List
from litellm.types.llms.bedrock import (
AmazonTitanG1EmbeddingRequest,
AmazonTitanG1EmbeddingResponse,
)
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
class AmazonTitanG1Config:
"""
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
"""
def __init__(
self,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self) -> List[str]:
return []
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
return optional_params
def _transform_request(
self, input: str, inference_params: dict
) -> AmazonTitanG1EmbeddingRequest:
return AmazonTitanG1EmbeddingRequest(inputText=input)
def _transform_response(
self, response_list: List[dict], model: str
) -> EmbeddingResponse:
total_prompt_tokens = 0
transformed_responses: List[Embedding] = []
for index, response in enumerate(response_list):
_parsed_response = AmazonTitanG1EmbeddingResponse(**response) # type: ignore
transformed_responses.append(
Embedding(
embedding=_parsed_response["embedding"],
index=index,
object="embedding",
)
)
total_prompt_tokens += _parsed_response["inputTextTokenCount"]
usage = Usage(
prompt_tokens=total_prompt_tokens,
completion_tokens=0,
total_tokens=total_prompt_tokens,
)
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)

View File

@@ -0,0 +1,79 @@
"""
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan multimodal /invoke format.
Why separate file? Make it easy to see how transformation works
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html
"""
from typing import List
from litellm.types.llms.bedrock import (
AmazonTitanMultimodalEmbeddingConfig,
AmazonTitanMultimodalEmbeddingRequest,
AmazonTitanMultimodalEmbeddingResponse,
)
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
from litellm.utils import get_base64_str, is_base64_encoded
class AmazonTitanMultimodalEmbeddingG1Config:
"""
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html
"""
def __init__(self) -> None:
pass
def get_supported_openai_params(self) -> List[str]:
return ["dimensions"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
for k, v in non_default_params.items():
if k == "dimensions":
optional_params[
"embeddingConfig"
] = AmazonTitanMultimodalEmbeddingConfig(outputEmbeddingLength=v)
return optional_params
def _transform_request(
self, input: str, inference_params: dict
) -> AmazonTitanMultimodalEmbeddingRequest:
## check if b64 encoded str or not ##
is_encoded = is_base64_encoded(input)
if is_encoded: # check if string is b64 encoded image or not
b64_str = get_base64_str(input)
transformed_request = AmazonTitanMultimodalEmbeddingRequest(
inputImage=b64_str
)
else:
transformed_request = AmazonTitanMultimodalEmbeddingRequest(inputText=input)
for k, v in inference_params.items():
transformed_request[k] = v # type: ignore
return transformed_request
def _transform_response(
self, response_list: List[dict], model: str
) -> EmbeddingResponse:
total_prompt_tokens = 0
transformed_responses: List[Embedding] = []
for index, response in enumerate(response_list):
_parsed_response = AmazonTitanMultimodalEmbeddingResponse(**response) # type: ignore
transformed_responses.append(
Embedding(
embedding=_parsed_response["embedding"],
index=index,
object="embedding",
)
)
total_prompt_tokens += _parsed_response["inputTextTokenCount"]
usage = Usage(
prompt_tokens=total_prompt_tokens,
completion_tokens=0,
total_tokens=total_prompt_tokens,
)
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)

View File

@@ -0,0 +1,97 @@
"""
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan V2 /invoke format.
Why separate file? Make it easy to see how transformation works
Convers
- v2 request format
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
"""
import types
from typing import List, Optional
from litellm.types.llms.bedrock import (
AmazonTitanV2EmbeddingRequest,
AmazonTitanV2EmbeddingResponse,
)
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
class AmazonTitanV2Config:
"""
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
normalize: boolean - flag indicating whether or not to normalize the output embeddings. Defaults to true
dimensions: int - The number of dimensions the output embeddings should have. The following values are accepted: 1024 (default), 512, 256.
"""
normalize: Optional[bool] = None
dimensions: Optional[int] = None
def __init__(
self, normalize: Optional[bool] = None, dimensions: Optional[int] = None
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self) -> List[str]:
return ["dimensions"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
for k, v in non_default_params.items():
if k == "dimensions":
optional_params["dimensions"] = v
return optional_params
def _transform_request(
self, input: str, inference_params: dict
) -> AmazonTitanV2EmbeddingRequest:
return AmazonTitanV2EmbeddingRequest(inputText=input, **inference_params) # type: ignore
def _transform_response(
self, response_list: List[dict], model: str
) -> EmbeddingResponse:
total_prompt_tokens = 0
transformed_responses: List[Embedding] = []
for index, response in enumerate(response_list):
_parsed_response = AmazonTitanV2EmbeddingResponse(**response) # type: ignore
transformed_responses.append(
Embedding(
embedding=_parsed_response["embedding"],
index=index,
object="embedding",
)
)
total_prompt_tokens += _parsed_response["inputTextTokenCount"]
usage = Usage(
prompt_tokens=total_prompt_tokens,
completion_tokens=0,
total_tokens=total_prompt_tokens,
)
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses)

View File

@@ -0,0 +1,45 @@
"""
Transformation logic from OpenAI /v1/embeddings format to Bedrock Cohere /invoke format.
Why separate file? Make it easy to see how transformation works
"""
from typing import List
from litellm.llms.cohere.embed.transformation import CohereEmbeddingConfig
from litellm.types.llms.bedrock import CohereEmbeddingRequest
class BedrockCohereEmbeddingConfig:
def __init__(self) -> None:
pass
def get_supported_openai_params(self) -> List[str]:
return ["encoding_format"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
for k, v in non_default_params.items():
if k == "encoding_format":
optional_params["embedding_types"] = v
return optional_params
def _is_v3_model(self, model: str) -> bool:
return "3" in model
def _transform_request(
self, model: str, input: List[str], inference_params: dict
) -> CohereEmbeddingRequest:
transformed_request = CohereEmbeddingConfig()._transform_request(
model, input, inference_params
)
new_transformed_request = CohereEmbeddingRequest(
input_type=transformed_request["input_type"],
)
for k in CohereEmbeddingRequest.__annotations__.keys():
if k in transformed_request:
new_transformed_request[k] = transformed_request[k] # type: ignore
return new_transformed_request

View File

@@ -0,0 +1,480 @@
"""
Handles embedding calls to Bedrock's `/invoke` endpoint
"""
import copy
import json
from typing import Any, Callable, List, Optional, Tuple, Union
import httpx
import litellm
from litellm.llms.cohere.embed.handler import embedding as cohere_embedding
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
get_async_httpx_client,
)
from litellm.secret_managers.main import get_secret
from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest
from litellm.types.utils import EmbeddingResponse
from ..base_aws_llm import BaseAWSLLM
from ..common_utils import BedrockError
from .amazon_titan_g1_transformation import AmazonTitanG1Config
from .amazon_titan_multimodal_transformation import (
AmazonTitanMultimodalEmbeddingG1Config,
)
from .amazon_titan_v2_transformation import AmazonTitanV2Config
from .cohere_transformation import BedrockCohereEmbeddingConfig
class BedrockEmbedding(BaseAWSLLM):
def _load_credentials(
self,
optional_params: dict,
) -> Tuple[Any, str]:
try:
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
## CREDENTIALS ##
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_session_token = optional_params.pop("aws_session_token", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
### SET REGION NAME ###
if aws_region_name is None:
# check env #
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
if litellm_aws_region_name is not None and isinstance(
litellm_aws_region_name, str
):
aws_region_name = litellm_aws_region_name
standard_aws_region_name = get_secret("AWS_REGION", None)
if standard_aws_region_name is not None and isinstance(
standard_aws_region_name, str
):
aws_region_name = standard_aws_region_name
if aws_region_name is None:
aws_region_name = "us-west-2"
credentials: Credentials = self.get_credentials(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
aws_region_name=aws_region_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_role_name=aws_role_name,
aws_web_identity_token=aws_web_identity_token,
aws_sts_endpoint=aws_sts_endpoint,
)
return credentials, aws_region_name
async def async_embeddings(self):
pass
def _make_sync_call(
self,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
headers: dict,
data: dict,
) -> dict:
if client is None or not isinstance(client, HTTPHandler):
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
client = _get_httpx_client(_params) # type: ignore
else:
client = client
try:
response = client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise BedrockError(status_code=error_code, message=err.response.text)
except httpx.TimeoutException:
raise BedrockError(status_code=408, message="Timeout error occurred.")
return response.json()
async def _make_async_call(
self,
client: Optional[AsyncHTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
headers: dict,
data: dict,
) -> dict:
if client is None or not isinstance(client, AsyncHTTPHandler):
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
client = get_async_httpx_client(
params=_params, llm_provider=litellm.LlmProviders.BEDROCK
)
else:
client = client
try:
response = await client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise BedrockError(status_code=error_code, message=err.response.text)
except httpx.TimeoutException:
raise BedrockError(status_code=408, message="Timeout error occurred.")
return response.json()
def _single_func_embeddings(
self,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
batch_data: List[dict],
credentials: Any,
extra_headers: Optional[dict],
endpoint_url: str,
aws_region_name: str,
model: str,
logging_obj: Any,
):
try:
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
responses: List[dict] = []
for data in batch_data:
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped = request.prepare()
## LOGGING
logging_obj.pre_call(
input=data,
api_key="",
additional_args={
"complete_input_dict": data,
"api_base": prepped.url,
"headers": prepped.headers,
},
)
response = self._make_sync_call(
client=client,
timeout=timeout,
api_base=prepped.url,
headers=prepped.headers, # type: ignore
data=data,
)
## LOGGING
logging_obj.post_call(
input=data,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
responses.append(response)
returned_response: Optional[EmbeddingResponse] = None
## TRANSFORM RESPONSE ##
if model == "amazon.titan-embed-image-v1":
returned_response = (
AmazonTitanMultimodalEmbeddingG1Config()._transform_response(
response_list=responses, model=model
)
)
elif model == "amazon.titan-embed-text-v1":
returned_response = AmazonTitanG1Config()._transform_response(
response_list=responses, model=model
)
elif model == "amazon.titan-embed-text-v2:0":
returned_response = AmazonTitanV2Config()._transform_response(
response_list=responses, model=model
)
if returned_response is None:
raise Exception(
"Unable to map model response to known provider format. model={}".format(
model
)
)
return returned_response
async def _async_single_func_embeddings(
self,
client: Optional[AsyncHTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
batch_data: List[dict],
credentials: Any,
extra_headers: Optional[dict],
endpoint_url: str,
aws_region_name: str,
model: str,
logging_obj: Any,
):
try:
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
responses: List[dict] = []
for data in batch_data:
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped = request.prepare()
## LOGGING
logging_obj.pre_call(
input=data,
api_key="",
additional_args={
"complete_input_dict": data,
"api_base": prepped.url,
"headers": prepped.headers,
},
)
response = await self._make_async_call(
client=client,
timeout=timeout,
api_base=prepped.url,
headers=prepped.headers, # type: ignore
data=data,
)
## LOGGING
logging_obj.post_call(
input=data,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
responses.append(response)
returned_response: Optional[EmbeddingResponse] = None
## TRANSFORM RESPONSE ##
if model == "amazon.titan-embed-image-v1":
returned_response = (
AmazonTitanMultimodalEmbeddingG1Config()._transform_response(
response_list=responses, model=model
)
)
elif model == "amazon.titan-embed-text-v1":
returned_response = AmazonTitanG1Config()._transform_response(
response_list=responses, model=model
)
elif model == "amazon.titan-embed-text-v2:0":
returned_response = AmazonTitanV2Config()._transform_response(
response_list=responses, model=model
)
if returned_response is None:
raise Exception(
"Unable to map model response to known provider format. model={}".format(
model
)
)
return returned_response
def embeddings(
self,
model: str,
input: List[str],
api_base: Optional[str],
model_response: EmbeddingResponse,
print_verbose: Callable,
encoding,
logging_obj,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]],
timeout: Optional[Union[float, httpx.Timeout]],
aembedding: Optional[bool],
extra_headers: Optional[dict],
optional_params: dict,
litellm_params: dict,
) -> EmbeddingResponse:
try:
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
credentials, aws_region_name = self._load_credentials(optional_params)
### TRANSFORMATION ###
provider = model.split(".")[0]
inference_params = copy.deepcopy(optional_params)
inference_params = {
k: v
for k, v in inference_params.items()
if k.lower() not in self.aws_authentication_params
}
inference_params.pop(
"user", None
) # make sure user is not passed in for bedrock call
modelId = (
optional_params.pop("model_id", None) or model
) # default to model if not passed
data: Optional[CohereEmbeddingRequest] = None
batch_data: Optional[List] = None
if provider == "cohere":
data = BedrockCohereEmbeddingConfig()._transform_request(
model=model, input=input, inference_params=inference_params
)
elif provider == "amazon" and model in [
"amazon.titan-embed-image-v1",
"amazon.titan-embed-text-v1",
"amazon.titan-embed-text-v2:0",
]:
batch_data = []
for i in input:
if model == "amazon.titan-embed-image-v1":
transformed_request: (
AmazonEmbeddingRequest
) = AmazonTitanMultimodalEmbeddingG1Config()._transform_request(
input=i, inference_params=inference_params
)
elif model == "amazon.titan-embed-text-v1":
transformed_request = AmazonTitanG1Config()._transform_request(
input=i, inference_params=inference_params
)
elif model == "amazon.titan-embed-text-v2:0":
transformed_request = AmazonTitanV2Config()._transform_request(
input=i, inference_params=inference_params
)
else:
raise Exception(
"Unmapped model. Received={}. Expected={}".format(
model,
[
"amazon.titan-embed-image-v1",
"amazon.titan-embed-text-v1",
"amazon.titan-embed-text-v2:0",
],
)
)
batch_data.append(transformed_request)
### SET RUNTIME ENDPOINT ###
endpoint_url, proxy_endpoint_url = self.get_runtime_endpoint(
api_base=api_base,
aws_bedrock_runtime_endpoint=optional_params.pop(
"aws_bedrock_runtime_endpoint", None
),
aws_region_name=aws_region_name,
)
endpoint_url = f"{endpoint_url}/model/{modelId}/invoke"
if batch_data is not None:
if aembedding:
return self._async_single_func_embeddings( # type: ignore
client=(
client
if client is not None and isinstance(client, AsyncHTTPHandler)
else None
),
timeout=timeout,
batch_data=batch_data,
credentials=credentials,
extra_headers=extra_headers,
endpoint_url=endpoint_url,
aws_region_name=aws_region_name,
model=model,
logging_obj=logging_obj,
)
return self._single_func_embeddings(
client=(
client
if client is not None and isinstance(client, HTTPHandler)
else None
),
timeout=timeout,
batch_data=batch_data,
credentials=credentials,
extra_headers=extra_headers,
endpoint_url=endpoint_url,
aws_region_name=aws_region_name,
model=model,
logging_obj=logging_obj,
)
elif data is None:
raise Exception("Unable to map Bedrock request to provider")
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped = request.prepare()
## ROUTING ##
return cohere_embedding(
model=model,
input=input,
model_response=model_response,
logging_obj=logging_obj,
optional_params=optional_params,
encoding=encoding,
data=data, # type: ignore
complete_api_base=prepped.url,
api_key=None,
aembedding=aembedding,
timeout=timeout,
client=client,
headers=prepped.headers, # type: ignore
)