structure saas with tools
This commit is contained in:
172
.venv/lib/python3.10/site-packages/litellm/llms/baseten.py
Normal file
172
.venv/lib/python3.10/site-packages/litellm/llms/baseten.py
Normal file
@@ -0,0 +1,172 @@
|
||||
import json
|
||||
import time
|
||||
from typing import Callable
|
||||
|
||||
import litellm
|
||||
from litellm.types.utils import ModelResponse, Usage
|
||||
|
||||
|
||||
class BasetenError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Api-Key {api_key}"
|
||||
return headers
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
completion_url_fragment_1 = "https://app.baseten.co/models/"
|
||||
completion_url_fragment_2 = "/predict"
|
||||
model = model
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
if message["role"] == "user":
|
||||
prompt += f"{message['content']}"
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
"prompt": prompt,
|
||||
"parameters": optional_params,
|
||||
"stream": (
|
||||
True
|
||||
if "stream" in optional_params and optional_params["stream"] is True
|
||||
else False
|
||||
),
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = litellm.module_level_client.post(
|
||||
completion_url_fragment_1 + model + completion_url_fragment_2,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=(
|
||||
True
|
||||
if "stream" in optional_params and optional_params["stream"] is True
|
||||
else False
|
||||
),
|
||||
)
|
||||
if "text/event-stream" in response.headers["Content-Type"] or (
|
||||
"stream" in optional_params and optional_params["stream"] is True
|
||||
):
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
if "error" in completion_response:
|
||||
raise BasetenError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
if "model_output" in completion_response:
|
||||
if (
|
||||
isinstance(completion_response["model_output"], dict)
|
||||
and "data" in completion_response["model_output"]
|
||||
and isinstance(completion_response["model_output"]["data"], list)
|
||||
):
|
||||
model_response.choices[0].message.content = completion_response[ # type: ignore
|
||||
"model_output"
|
||||
][
|
||||
"data"
|
||||
][
|
||||
0
|
||||
]
|
||||
elif isinstance(completion_response["model_output"], str):
|
||||
model_response.choices[0].message.content = completion_response[ # type: ignore
|
||||
"model_output"
|
||||
]
|
||||
elif "completion" in completion_response and isinstance(
|
||||
completion_response["completion"], str
|
||||
):
|
||||
model_response.choices[0].message.content = completion_response[ # type: ignore
|
||||
"completion"
|
||||
]
|
||||
elif isinstance(completion_response, list) and len(completion_response) > 0:
|
||||
if "generated_text" not in completion_response:
|
||||
raise BasetenError(
|
||||
message=f"Unable to parse response. Original response: {response.text}",
|
||||
status_code=response.status_code,
|
||||
)
|
||||
model_response.choices[0].message.content = completion_response[0][ # type: ignore
|
||||
"generated_text"
|
||||
]
|
||||
## GETTING LOGPROBS
|
||||
if (
|
||||
"details" in completion_response[0]
|
||||
and "tokens" in completion_response[0]["details"]
|
||||
):
|
||||
model_response.choices[0].finish_reason = completion_response[0][
|
||||
"details"
|
||||
]["finish_reason"]
|
||||
sum_logprob = 0
|
||||
for token in completion_response[0]["details"]["tokens"]:
|
||||
sum_logprob += token["logprob"]
|
||||
model_response.choices[0].logprobs = sum_logprob # type: ignore
|
||||
else:
|
||||
raise BasetenError(
|
||||
message=f"Unable to parse response. Original response: {response.text}",
|
||||
status_code=response.status_code,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
||||
Reference in New Issue
Block a user