structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1 @@
`/chat/completion` calls routed via `openai.py`.

View File

@@ -0,0 +1,3 @@
"""
LLM Calling done in `openai/openai.py`
"""

View File

@@ -0,0 +1,321 @@
import enum
from typing import Any, List, Optional, Tuple, cast
from urllib.parse import urlparse
import httpx
from httpx import Response
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.prompt_templates.common_utils import (
_audio_or_image_in_message_content,
convert_content_list_to_str,
)
from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj
from litellm.llms.openai.common_utils import drop_params_from_unprocessable_entity_error
from litellm.llms.openai.openai import OpenAIConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse, ProviderField
from litellm.utils import _add_path_to_api_base, supports_tool_choice
class AzureFoundryErrorStrings(str, enum.Enum):
SET_EXTRA_PARAMETERS_TO_PASS_THROUGH = "Set extra-parameters to 'pass-through'"
class AzureAIStudioConfig(OpenAIConfig):
def get_supported_openai_params(self, model: str) -> List:
model_supports_tool_choice = True # azure ai supports this by default
if not supports_tool_choice(model=f"azure_ai/{model}"):
model_supports_tool_choice = False
supported_params = super().get_supported_openai_params(model)
if not model_supports_tool_choice:
filtered_supported_params = []
for param in supported_params:
if param != "tool_choice":
filtered_supported_params.append(param)
return filtered_supported_params
return supported_params
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
if api_base and self._should_use_api_key_header(api_base):
headers["api-key"] = api_key
else:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def _should_use_api_key_header(self, api_base: str) -> bool:
"""
Returns True if the request should use `api-key` header for authentication.
"""
parsed_url = urlparse(api_base)
host = parsed_url.hostname
if host and (
host.endswith(".services.ai.azure.com")
or host.endswith(".openai.azure.com")
):
return True
return False
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
Constructs a complete URL for the API request.
Args:
- api_base: Base URL, e.g.,
"https://litellm8397336933.services.ai.azure.com"
OR
"https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview"
- model: Model name.
- optional_params: Additional query parameters, including "api_version".
- stream: If streaming is required (optional).
Returns:
- A complete URL string, e.g.,
"https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview"
"""
if api_base is None:
raise ValueError(
f"api_base is required for Azure AI Studio. Please set the api_base parameter. Passed `api_base={api_base}`"
)
original_url = httpx.URL(api_base)
# Extract api_version or use default
api_version = cast(Optional[str], litellm_params.get("api_version"))
# Create a new dictionary with existing params
query_params = dict(original_url.params)
# Add api_version if needed
if "api-version" not in query_params and api_version:
query_params["api-version"] = api_version
# Add the path to the base URL
if "services.ai.azure.com" in api_base:
new_url = _add_path_to_api_base(
api_base=api_base, ending_path="/models/chat/completions"
)
else:
new_url = _add_path_to_api_base(
api_base=api_base, ending_path="/chat/completions"
)
# Use the new query_params dictionary
final_url = httpx.URL(new_url).copy_with(params=query_params)
return str(final_url)
def get_required_params(self) -> List[ProviderField]:
"""For a given provider, return it's required fields with a description"""
return [
ProviderField(
field_name="api_key",
field_type="string",
field_description="Your Azure AI Studio API Key.",
field_value="zEJ...",
),
ProviderField(
field_name="api_base",
field_type="string",
field_description="Your Azure AI Studio API Base.",
field_value="https://Mistral-serverless.",
),
]
def _transform_messages(
self,
messages: List[AllMessageValues],
model: str,
) -> List:
"""
- Azure AI Studio doesn't support content as a list. This handles:
1. Transforms list content to a string.
2. If message contains an image or audio, send as is (user-intended)
"""
for message in messages:
# Do nothing if the message contains an image or audio
if _audio_or_image_in_message_content(message):
continue
texts = convert_content_list_to_str(message=message)
if texts:
message["content"] = texts
return messages
def _is_azure_openai_model(self, model: str, api_base: Optional[str]) -> bool:
try:
if "/" in model:
model = model.split("/", 1)[1]
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
or model in litellm.open_ai_embedding_models
):
return True
except Exception:
return False
return False
def _get_openai_compatible_provider_info(
self,
model: str,
api_base: Optional[str],
api_key: Optional[str],
custom_llm_provider: str,
) -> Tuple[Optional[str], Optional[str], str]:
api_base = api_base or get_secret_str("AZURE_AI_API_BASE")
dynamic_api_key = api_key or get_secret_str("AZURE_AI_API_KEY")
if self._is_azure_openai_model(model=model, api_base=api_base):
verbose_logger.debug(
"Model={} is Azure OpenAI model. Setting custom_llm_provider='azure'.".format(
model
)
)
custom_llm_provider = "azure"
return api_base, dynamic_api_key, custom_llm_provider
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
extra_body = optional_params.pop("extra_body", {})
if extra_body and isinstance(extra_body, dict):
optional_params.update(extra_body)
optional_params.pop("max_retries", None)
return super().transform_request(
model, messages, optional_params, litellm_params, headers
)
def transform_response(
self,
model: str,
raw_response: Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
model_response.model = f"azure_ai/{model}"
return super().transform_response(
model=model,
raw_response=raw_response,
model_response=model_response,
logging_obj=logging_obj,
request_data=request_data,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
encoding=encoding,
api_key=api_key,
json_mode=json_mode,
)
def should_retry_llm_api_inside_llm_translation_on_http_error(
self, e: httpx.HTTPStatusError, litellm_params: dict
) -> bool:
should_drop_params = litellm_params.get("drop_params") or litellm.drop_params
error_text = e.response.text
if should_drop_params and "Extra inputs are not permitted" in error_text:
return True
elif (
"unknown field: parameter index is not a valid field" in error_text
): # remove index from tool calls
return True
elif (
AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
in error_text
): # remove extra-parameters from tool calls
return True
return super().should_retry_llm_api_inside_llm_translation_on_http_error(
e=e, litellm_params=litellm_params
)
@property
def max_retry_on_unprocessable_entity_error(self) -> int:
return 2
def transform_request_on_unprocessable_entity_error(
self, e: httpx.HTTPStatusError, request_data: dict
) -> dict:
_messages = cast(Optional[List[AllMessageValues]], request_data.get("messages"))
if (
"unknown field: parameter index is not a valid field" in e.response.text
and _messages is not None
):
litellm.remove_index_from_tool_calls(
messages=_messages,
)
elif (
AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
in e.response.text
):
request_data = self._drop_extra_params_from_request_data(
request_data, e.response.text
)
data = drop_params_from_unprocessable_entity_error(e=e, data=request_data)
return data
def _drop_extra_params_from_request_data(
self, request_data: dict, error_text: str
) -> dict:
params_to_drop = self._extract_params_to_drop_from_error_text(error_text)
if params_to_drop:
for param in params_to_drop:
if param in request_data:
request_data.pop(param, None)
return request_data
def _extract_params_to_drop_from_error_text(
self, error_text: str
) -> Optional[List[str]]:
"""
Error text looks like this"
"Extra parameters ['stream_options', 'extra-parameters'] are not allowed when extra-parameters is not set or set to be 'error'.
"""
import re
# Extract parameters within square brackets
match = re.search(r"\[(.*?)\]", error_text)
if not match:
return []
# Parse the extracted string into a list of parameter names
params_str = match.group(1)
params = []
for param in params_str.split(","):
# Clean up the parameter name (remove quotes, spaces)
clean_param = param.strip().strip("'").strip('"')
if clean_param:
params.append(clean_param)
return params

View File

@@ -0,0 +1 @@
from .handler import AzureAIEmbedding

View File

@@ -0,0 +1,98 @@
"""
Transformation logic from OpenAI /v1/embeddings format to Azure AI Cohere's /v1/embed.
Why separate file? Make it easy to see how transformation works
Convers
- Cohere request format
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
"""
from typing import List, Optional, Tuple
from litellm.types.llms.azure_ai import ImageEmbeddingInput, ImageEmbeddingRequest
from litellm.types.llms.openai import EmbeddingCreateParams
from litellm.types.utils import EmbeddingResponse, Usage
from litellm.utils import is_base64_encoded
class AzureAICohereConfig:
def __init__(self) -> None:
pass
def _map_azure_model_group(self, model: str) -> str:
if model == "offer-cohere-embed-multili-paygo":
return "Cohere-embed-v3-multilingual"
elif model == "offer-cohere-embed-english-paygo":
return "Cohere-embed-v3-english"
return model
def _transform_request_image_embeddings(
self, input: List[str], optional_params: dict
) -> ImageEmbeddingRequest:
"""
Assume all str in list is base64 encoded string
"""
image_input: List[ImageEmbeddingInput] = []
for i in input:
embedding_input = ImageEmbeddingInput(image=i)
image_input.append(embedding_input)
return ImageEmbeddingRequest(input=image_input, **optional_params)
def _transform_request(
self, input: List[str], optional_params: dict, model: str
) -> Tuple[ImageEmbeddingRequest, EmbeddingCreateParams, List[int]]:
"""
Return the list of input to `/image/embeddings`, `/v1/embeddings`, list of image_embedding_idx for recombination
"""
image_embeddings: List[str] = []
image_embedding_idx: List[int] = []
for idx, i in enumerate(input):
"""
- is base64 -> route to image embeddings
- is ImageEmbeddingInput -> route to image embeddings
- else -> route to `/v1/embeddings`
"""
if is_base64_encoded(i):
image_embeddings.append(i)
image_embedding_idx.append(idx)
## REMOVE IMAGE EMBEDDINGS FROM input list
filtered_input = [
item for idx, item in enumerate(input) if idx not in image_embedding_idx
]
v1_embeddings_request = EmbeddingCreateParams(
input=filtered_input, model=model, **optional_params
)
image_embeddings_request = self._transform_request_image_embeddings(
input=image_embeddings, optional_params=optional_params
)
return image_embeddings_request, v1_embeddings_request, image_embedding_idx
def _transform_response(self, response: EmbeddingResponse) -> EmbeddingResponse:
additional_headers: Optional[dict] = response._hidden_params.get(
"additional_headers"
)
if additional_headers:
# CALCULATE USAGE
input_tokens: Optional[str] = additional_headers.get(
"llm_provider-num_tokens"
)
if input_tokens:
if response.usage:
response.usage.prompt_tokens = int(input_tokens)
else:
response.usage = Usage(prompt_tokens=int(input_tokens))
# SET MODEL
base_model: Optional[str] = additional_headers.get(
"llm_provider-azureml-model-group"
)
if base_model:
response.model = self._map_azure_model_group(base_model)
return response

View File

@@ -0,0 +1,290 @@
from typing import List, Optional, Union
from openai import OpenAI
import litellm
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
get_async_httpx_client,
)
from litellm.llms.openai.openai import OpenAIChatCompletion
from litellm.types.llms.azure_ai import ImageEmbeddingRequest
from litellm.types.utils import EmbeddingResponse
from litellm.utils import convert_to_model_response_object
from .cohere_transformation import AzureAICohereConfig
class AzureAIEmbedding(OpenAIChatCompletion):
def _process_response(
self,
image_embedding_responses: Optional[List],
text_embedding_responses: Optional[List],
image_embeddings_idx: List[int],
model_response: EmbeddingResponse,
input: List,
):
combined_responses = []
if (
image_embedding_responses is not None
and text_embedding_responses is not None
):
# Combine and order the results
text_idx = 0
image_idx = 0
for idx in range(len(input)):
if idx in image_embeddings_idx:
combined_responses.append(image_embedding_responses[image_idx])
image_idx += 1
else:
combined_responses.append(text_embedding_responses[text_idx])
text_idx += 1
model_response.data = combined_responses
elif image_embedding_responses is not None:
model_response.data = image_embedding_responses
elif text_embedding_responses is not None:
model_response.data = text_embedding_responses
response = AzureAICohereConfig()._transform_response(response=model_response) # type: ignore
return response
async def async_image_embedding(
self,
model: str,
data: ImageEmbeddingRequest,
timeout: float,
logging_obj,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
) -> EmbeddingResponse:
if client is None or not isinstance(client, AsyncHTTPHandler):
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.AZURE_AI,
params={"timeout": timeout},
)
url = "{}/images/embeddings".format(api_base)
response = await client.post(
url=url,
json=data, # type: ignore
headers={"Authorization": "Bearer {}".format(api_key)},
)
embedding_response = response.json()
embedding_headers = dict(response.headers)
returned_response: EmbeddingResponse = convert_to_model_response_object( # type: ignore
response_object=embedding_response,
model_response_object=model_response,
response_type="embedding",
stream=False,
_response_headers=embedding_headers,
)
return returned_response
def image_embedding(
self,
model: str,
data: ImageEmbeddingRequest,
timeout: float,
logging_obj,
model_response: EmbeddingResponse,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
if api_base is None:
raise ValueError(
"api_base is None. Please set AZURE_AI_API_BASE or dynamically via `api_base` param, to make the request."
)
if api_key is None:
raise ValueError(
"api_key is None. Please set AZURE_AI_API_KEY or dynamically via `api_key` param, to make the request."
)
if client is None or not isinstance(client, HTTPHandler):
client = HTTPHandler(timeout=timeout, concurrent_limit=1)
url = "{}/images/embeddings".format(api_base)
response = client.post(
url=url,
json=data, # type: ignore
headers={"Authorization": "Bearer {}".format(api_key)},
)
embedding_response = response.json()
embedding_headers = dict(response.headers)
returned_response: EmbeddingResponse = convert_to_model_response_object( # type: ignore
response_object=embedding_response,
model_response_object=model_response,
response_type="embedding",
stream=False,
_response_headers=embedding_headers,
)
return returned_response
async def async_embedding(
self,
model: str,
input: List,
timeout: float,
logging_obj,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
) -> EmbeddingResponse:
(
image_embeddings_request,
v1_embeddings_request,
image_embeddings_idx,
) = AzureAICohereConfig()._transform_request(
input=input, optional_params=optional_params, model=model
)
image_embedding_responses: Optional[List] = None
text_embedding_responses: Optional[List] = None
if image_embeddings_request["input"]:
image_response = await self.async_image_embedding(
model=model,
data=image_embeddings_request,
timeout=timeout,
logging_obj=logging_obj,
model_response=model_response,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
client=client,
)
image_embedding_responses = image_response.data
if image_embedding_responses is None:
raise Exception("/image/embeddings route returned None Embeddings.")
if v1_embeddings_request["input"]:
response: EmbeddingResponse = await super().embedding( # type: ignore
model=model,
input=input,
timeout=timeout,
logging_obj=logging_obj,
model_response=model_response,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
client=client,
aembedding=True,
)
text_embedding_responses = response.data
if text_embedding_responses is None:
raise Exception("/v1/embeddings route returned None Embeddings.")
return self._process_response(
image_embedding_responses=image_embedding_responses,
text_embedding_responses=text_embedding_responses,
image_embeddings_idx=image_embeddings_idx,
model_response=model_response,
input=input,
)
def embedding(
self,
model: str,
input: List,
timeout: float,
logging_obj,
model_response: EmbeddingResponse,
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
aembedding=None,
max_retries: Optional[int] = None,
) -> EmbeddingResponse:
"""
- Separate image url from text
-> route image url call to `/image/embeddings`
-> route text call to `/v1/embeddings` (OpenAI route)
assemble result in-order, and return
"""
if aembedding is True:
return self.async_embedding( # type: ignore
model,
input,
timeout,
logging_obj,
model_response,
optional_params,
api_key,
api_base,
client,
)
(
image_embeddings_request,
v1_embeddings_request,
image_embeddings_idx,
) = AzureAICohereConfig()._transform_request(
input=input, optional_params=optional_params, model=model
)
image_embedding_responses: Optional[List] = None
text_embedding_responses: Optional[List] = None
if image_embeddings_request["input"]:
image_response = self.image_embedding(
model=model,
data=image_embeddings_request,
timeout=timeout,
logging_obj=logging_obj,
model_response=model_response,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
client=client,
)
image_embedding_responses = image_response.data
if image_embedding_responses is None:
raise Exception("/image/embeddings route returned None Embeddings.")
if v1_embeddings_request["input"]:
response: EmbeddingResponse = super().embedding( # type: ignore
model,
input,
timeout,
logging_obj,
model_response,
optional_params,
api_key,
api_base,
client=(
client
if client is not None and isinstance(client, OpenAI)
else None
),
aembedding=aembedding,
)
text_embedding_responses = response.data
if text_embedding_responses is None:
raise Exception("/v1/embeddings route returned None Embeddings.")
return self._process_response(
image_embedding_responses=image_embedding_responses,
text_embedding_responses=text_embedding_responses,
image_embeddings_idx=image_embeddings_idx,
model_response=model_response,
input=input,
)

View File

@@ -0,0 +1,5 @@
"""
Azure AI Rerank - uses `llm_http_handler.py` to make httpx requests
Request/Response transformation is handled in `transformation.py`
"""

View File

@@ -0,0 +1,91 @@
"""
Translate between Cohere's `/rerank` format and Azure AI's `/rerank` format.
"""
from typing import Optional
import httpx
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.cohere.rerank.transformation import CohereRerankConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.utils import RerankResponse
class AzureAIRerankConfig(CohereRerankConfig):
"""
Azure AI Rerank - Follows the same Spec as Cohere Rerank
"""
def get_complete_url(self, api_base: Optional[str], model: str) -> str:
if api_base is None:
raise ValueError(
"Azure AI API Base is required. api_base=None. Set in call or via `AZURE_AI_API_BASE` env var."
)
if not api_base.endswith("/v1/rerank"):
api_base = f"{api_base}/v1/rerank"
return api_base
def validate_environment(
self,
headers: dict,
model: str,
api_key: Optional[str] = None,
) -> dict:
if api_key is None:
api_key = get_secret_str("AZURE_AI_API_KEY") or litellm.azure_key
if api_key is None:
raise ValueError(
"Azure AI API key is required. Please set 'AZURE_AI_API_KEY' or 'litellm.azure_key'"
)
default_headers = {
"Authorization": f"Bearer {api_key}",
"accept": "application/json",
"content-type": "application/json",
}
# If 'Authorization' is provided in headers, it overrides the default.
if "Authorization" in headers:
default_headers["Authorization"] = headers["Authorization"]
# Merge other headers, overriding any default ones except Authorization
return {**default_headers, **headers}
def transform_rerank_response(
self,
model: str,
raw_response: httpx.Response,
model_response: RerankResponse,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
request_data: dict = {},
optional_params: dict = {},
litellm_params: dict = {},
) -> RerankResponse:
rerank_response = super().transform_rerank_response(
model=model,
raw_response=raw_response,
model_response=model_response,
logging_obj=logging_obj,
api_key=api_key,
request_data=request_data,
optional_params=optional_params,
litellm_params=litellm_params,
)
base_model = self._get_base_model(
rerank_response._hidden_params.get("llm_provider-azureml-model-group")
)
rerank_response._hidden_params["model"] = base_model
return rerank_response
def _get_base_model(self, azure_model_group: Optional[str]) -> Optional[str]:
if azure_model_group is None:
return None
if azure_model_group == "offer-cohere-rerank-mul-paygo":
return "azure_ai/cohere-rerank-v3-multilingual"
if azure_model_group == "offer-cohere-rerank-eng-paygo":
return "azure_ai/cohere-rerank-v3-english"
return azure_model_group