structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,311 @@
from typing import TYPE_CHECKING, Any, List, Optional, Union
from httpx._models import Headers, Response
import litellm
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_to_azure_openai_messages,
)
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.types.llms.azure import (
API_VERSION_MONTH_SUPPORTED_RESPONSE_FORMAT,
API_VERSION_YEAR_SUPPORTED_RESPONSE_FORMAT,
)
from litellm.types.utils import ModelResponse
from litellm.utils import supports_response_schema
from ....exceptions import UnsupportedParamsError
from ....types.llms.openai import AllMessageValues
from ...base_llm.chat.transformation import BaseConfig
from ..common_utils import AzureOpenAIError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
class AzureOpenAIConfig(BaseConfig):
"""
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str) -> List[str]:
return [
"temperature",
"n",
"stream",
"stream_options",
"stop",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"function_call",
"functions",
"tools",
"tool_choice",
"top_p",
"logprobs",
"top_logprobs",
"response_format",
"seed",
"extra_headers",
"parallel_tool_calls",
"prediction",
"modalities",
"audio",
]
def _is_response_format_supported_model(self, model: str) -> bool:
"""
- all 4o models are supported
- check if 'supports_response_format' is True from get_model_info
- [TODO] support smart retries for 3.5 models (some supported, some not)
"""
if "4o" in model:
return True
elif supports_response_schema(model):
return True
return False
def _is_response_format_supported_api_version(
self, api_version_year: str, api_version_month: str
) -> bool:
"""
- check if api_version is supported for response_format
- returns True if the API version is equal to or newer than the supported version
"""
api_year = int(api_version_year)
api_month = int(api_version_month)
supported_year = int(API_VERSION_YEAR_SUPPORTED_RESPONSE_FORMAT)
supported_month = int(API_VERSION_MONTH_SUPPORTED_RESPONSE_FORMAT)
# If the year is greater than supported year, it's definitely supported
if api_year > supported_year:
return True
# If the year is less than supported year, it's not supported
elif api_year < supported_year:
return False
# If same year, check if month is >= supported month
else:
return api_month >= supported_month
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
api_version: str = "",
) -> dict:
supported_openai_params = self.get_supported_openai_params(model)
api_version_times = api_version.split("-")
api_version_year = api_version_times[0]
api_version_month = api_version_times[1]
api_version_day = api_version_times[2]
for param, value in non_default_params.items():
if param == "tool_choice":
"""
This parameter requires API version 2023-12-01-preview or later
tool_choice='required' is not supported as of 2024-05-01-preview
"""
## check if api version supports this param ##
if (
api_version_year < "2023"
or (api_version_year == "2023" and api_version_month < "12")
or (
api_version_year == "2023"
and api_version_month == "12"
and api_version_day < "01"
)
):
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
)
elif value == "required" and (
api_version_year == "2024" and api_version_month <= "05"
): ## check if tool_choice value is supported ##
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
)
else:
optional_params["tool_choice"] = value
elif param == "response_format" and isinstance(value, dict):
_is_response_format_supported_model = (
self._is_response_format_supported_model(model)
)
is_response_format_supported_api_version = (
self._is_response_format_supported_api_version(
api_version_year, api_version_month
)
)
is_response_format_supported = (
is_response_format_supported_api_version
and _is_response_format_supported_model
)
optional_params = self._add_response_format_to_tools(
optional_params=optional_params,
value=value,
is_response_format_supported=is_response_format_supported,
)
elif param == "tools" and isinstance(value, list):
optional_params.setdefault("tools", [])
optional_params["tools"].extend(value)
elif param in supported_openai_params:
optional_params[param] = value
return optional_params
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
messages = convert_to_azure_openai_messages(messages)
return {
"model": model,
"messages": messages,
**optional_params,
}
def transform_response(
self,
model: str,
raw_response: Response,
model_response: ModelResponse,
logging_obj: LoggingClass,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
raise NotImplementedError(
"Azure OpenAI handler.py has custom logic for transforming response, as it uses the OpenAI SDK."
)
def get_mapped_special_auth_params(self) -> dict:
return {"token": "azure_ad_token"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "token":
optional_params["azure_ad_token"] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return ["europe", "sweden", "switzerland", "france", "uk"]
def get_us_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return [
"us",
"eastus",
"eastus2",
"eastus2euap",
"eastus3",
"southcentralus",
"westus",
"westus2",
"westus3",
"westus4",
]
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return AzureOpenAIError(
message=error_message, status_code=status_code, headers=headers
)
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
raise NotImplementedError(
"Azure OpenAI has custom logic for validating environment, as it uses the OpenAI SDK."
)

View File

@@ -0,0 +1,72 @@
"""
Handler file for calls to Azure OpenAI's o1/o3 family of models
Written separately to handle faking streaming for o1 and o3 models.
"""
from typing import Any, Callable, Optional, Union
import httpx
from litellm.types.utils import ModelResponse
from ...openai.openai import OpenAIChatCompletion
from ..common_utils import BaseAzureLLM
class AzureOpenAIO1ChatCompletion(BaseAzureLLM, OpenAIChatCompletion):
def completion(
self,
model_response: ModelResponse,
timeout: Union[float, httpx.Timeout],
optional_params: dict,
litellm_params: dict,
logging_obj: Any,
model: Optional[str] = None,
messages: Optional[list] = None,
print_verbose: Optional[Callable] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
dynamic_params: Optional[bool] = None,
azure_ad_token: Optional[str] = None,
acompletion: bool = False,
logger_fn=None,
headers: Optional[dict] = None,
custom_prompt_dict: dict = {},
client=None,
organization: Optional[str] = None,
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
):
client = self.get_azure_openai_client(
litellm_params=litellm_params,
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
_is_async=acompletion,
)
return super().completion(
model_response=model_response,
timeout=timeout,
optional_params=optional_params,
litellm_params=litellm_params,
logging_obj=logging_obj,
model=model,
messages=messages,
print_verbose=print_verbose,
api_key=api_key,
api_base=api_base,
api_version=api_version,
dynamic_params=dynamic_params,
azure_ad_token=azure_ad_token,
acompletion=acompletion,
logger_fn=logger_fn,
headers=headers,
custom_prompt_dict=custom_prompt_dict,
client=client,
organization=organization,
custom_llm_provider=custom_llm_provider,
drop_params=drop_params,
)

View File

@@ -0,0 +1,97 @@
"""
Support for o1 and o3 model families
https://platform.openai.com/docs/guides/reasoning
Translations handled by LiteLLM:
- modalities: image => drop param (if user opts in to dropping param)
- role: system ==> translate to role 'user'
- streaming => faked by LiteLLM
- Tools, response_format => drop param (if user opts in to dropping param)
- Logprobs => drop param (if user opts in to dropping param)
- Temperature => drop param (if user opts in to dropping param)
"""
from typing import List, Optional
import litellm
from litellm import verbose_logger
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import get_model_info
from ...openai.chat.o_series_transformation import OpenAIOSeriesConfig
class AzureOpenAIO1Config(OpenAIOSeriesConfig):
def get_supported_openai_params(self, model: str) -> list:
"""
Get the supported OpenAI params for the Azure O-Series models
"""
all_openai_params = litellm.OpenAIGPTConfig().get_supported_openai_params(
model=model
)
non_supported_params = [
"logprobs",
"top_p",
"presence_penalty",
"frequency_penalty",
"top_logprobs",
]
o_series_only_param = ["reasoning_effort"]
all_openai_params.extend(o_series_only_param)
return [
param for param in all_openai_params if param not in non_supported_params
]
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
"""
Currently no Azure O Series models support native streaming.
"""
if stream is not True:
return False
if (
model and "o3" in model
): # o3 models support streaming - https://github.com/BerriAI/litellm/issues/8274
return False
if model is not None:
try:
model_info = get_model_info(
model=model, custom_llm_provider=custom_llm_provider
) # allow user to override default with model_info={"supports_native_streaming": true}
if (
model_info.get("supports_native_streaming") is True
): # allow user to override default with model_info={"supports_native_streaming": true}
return False
except Exception as e:
verbose_logger.debug(
f"Error getting model info in AzureOpenAIO1Config: {e}"
)
return True
def is_o_series_model(self, model: str) -> bool:
return "o1" in model or "o3" in model or "o4" in model or "o_series/" in model
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
model = model.replace(
"o_series/", ""
) # handle o_series/my-random-deployment-name
return super().transform_request(
model, messages, optional_params, litellm_params, headers
)