structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1025
.venv/lib/python3.10/site-packages/litellm/llms/azure/assistants.py
Normal file
1025
.venv/lib/python3.10/site-packages/litellm/llms/azure/assistants.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,198 @@
|
||||
import uuid
|
||||
from typing import Any, Coroutine, Optional, Union
|
||||
|
||||
from openai import AsyncAzureOpenAI, AzureOpenAI
|
||||
from pydantic import BaseModel
|
||||
|
||||
from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name
|
||||
from litellm.types.utils import FileTypes
|
||||
from litellm.utils import (
|
||||
TranscriptionResponse,
|
||||
convert_to_model_response_object,
|
||||
extract_duration_from_srt_or_vtt,
|
||||
)
|
||||
|
||||
from .azure import AzureChatCompletion
|
||||
from .common_utils import AzureOpenAIError
|
||||
|
||||
|
||||
class AzureAudioTranscription(AzureChatCompletion):
|
||||
def audio_transcriptions(
|
||||
self,
|
||||
model: str,
|
||||
audio_file: FileTypes,
|
||||
optional_params: dict,
|
||||
logging_obj: Any,
|
||||
model_response: TranscriptionResponse,
|
||||
timeout: float,
|
||||
max_retries: int,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
client=None,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
atranscription: bool = False,
|
||||
litellm_params: Optional[dict] = None,
|
||||
) -> Union[TranscriptionResponse, Coroutine[Any, Any, TranscriptionResponse]]:
|
||||
data = {"model": model, "file": audio_file, **optional_params}
|
||||
|
||||
if atranscription is True:
|
||||
return self.async_audio_transcriptions(
|
||||
audio_file=audio_file,
|
||||
data=data,
|
||||
model_response=model_response,
|
||||
timeout=timeout,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
client=client,
|
||||
max_retries=max_retries,
|
||||
logging_obj=logging_obj,
|
||||
model=model,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
|
||||
azure_client = self.get_azure_openai_client(
|
||||
api_version=api_version,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
model=model,
|
||||
_is_async=False,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
if not isinstance(azure_client, AzureOpenAI):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="azure_client is not an instance of AzureOpenAI",
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=f"audio_file_{uuid.uuid4()}",
|
||||
api_key=azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
||||
"api_base": azure_client._base_url._uri_reference,
|
||||
"atranscription": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
|
||||
response = azure_client.audio.transcriptions.create(
|
||||
**data, timeout=timeout # type: ignore
|
||||
)
|
||||
|
||||
if isinstance(response, BaseModel):
|
||||
stringified_response = response.model_dump()
|
||||
else:
|
||||
stringified_response = TranscriptionResponse(text=response).model_dump()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=get_audio_file_name(audio_file),
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
|
||||
final_response: TranscriptionResponse = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
|
||||
return final_response
|
||||
|
||||
async def async_audio_transcriptions(
|
||||
self,
|
||||
audio_file: FileTypes,
|
||||
model: str,
|
||||
data: dict,
|
||||
model_response: TranscriptionResponse,
|
||||
timeout: float,
|
||||
logging_obj: Any,
|
||||
api_version: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
client=None,
|
||||
max_retries=None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
) -> TranscriptionResponse:
|
||||
response = None
|
||||
try:
|
||||
async_azure_client = self.get_azure_openai_client(
|
||||
api_version=api_version,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
model=model,
|
||||
_is_async=True,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
if not isinstance(async_azure_client, AsyncAzureOpenAI):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="async_azure_client is not an instance of AsyncAzureOpenAI",
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=f"audio_file_{uuid.uuid4()}",
|
||||
api_key=async_azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {
|
||||
"Authorization": f"Bearer {async_azure_client.api_key}"
|
||||
},
|
||||
"api_base": async_azure_client._base_url._uri_reference,
|
||||
"atranscription": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
|
||||
raw_response = (
|
||||
await async_azure_client.audio.transcriptions.with_raw_response.create(
|
||||
**data, timeout=timeout
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
headers = dict(raw_response.headers)
|
||||
response = raw_response.parse()
|
||||
|
||||
if isinstance(response, BaseModel):
|
||||
stringified_response = response.model_dump()
|
||||
else:
|
||||
stringified_response = TranscriptionResponse(text=response).model_dump()
|
||||
duration = extract_duration_from_srt_or_vtt(response)
|
||||
stringified_response["duration"] = duration
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=get_audio_file_name(audio_file),
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"headers": {
|
||||
"Authorization": f"Bearer {async_azure_client.api_key}"
|
||||
},
|
||||
"api_base": async_azure_client._base_url._uri_reference,
|
||||
"atranscription": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
original_response=stringified_response,
|
||||
)
|
||||
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
|
||||
response = convert_to_model_response_object(
|
||||
_response_headers=headers,
|
||||
response_object=stringified_response,
|
||||
model_response_object=model_response,
|
||||
hidden_params=hidden_params,
|
||||
response_type="audio_transcription",
|
||||
)
|
||||
if not isinstance(response, TranscriptionResponse):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="response is not an instance of TranscriptionResponse",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=input,
|
||||
api_key=api_key,
|
||||
original_response=str(e),
|
||||
)
|
||||
raise e
|
||||
1341
.venv/lib/python3.10/site-packages/litellm/llms/azure/azure.py
Normal file
1341
.venv/lib/python3.10/site-packages/litellm/llms/azure/azure.py
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@@ -0,0 +1,210 @@
|
||||
"""
|
||||
Azure Batches API Handler
|
||||
"""
|
||||
|
||||
from typing import Any, Coroutine, Optional, Union, cast
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.llms.azure.azure import AsyncAzureOpenAI, AzureOpenAI
|
||||
from litellm.types.llms.openai import (
|
||||
Batch,
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from litellm.types.utils import LiteLLMBatch
|
||||
|
||||
from ..common_utils import BaseAzureLLM
|
||||
|
||||
|
||||
class AzureBatchesAPI(BaseAzureLLM):
|
||||
"""
|
||||
Azure methods to support for batches
|
||||
- create_batch()
|
||||
- retrieve_batch()
|
||||
- cancel_batch()
|
||||
- list_batch()
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
async def acreate_batch(
|
||||
self,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
azure_client: AsyncAzureOpenAI,
|
||||
) -> LiteLLMBatch:
|
||||
response = await azure_client.batches.create(**create_batch_data)
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
def create_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]:
|
||||
azure_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
litellm_params=litellm_params or {},
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.acreate_batch( # type: ignore
|
||||
create_batch_data=create_batch_data, azure_client=azure_client
|
||||
)
|
||||
response = cast(AzureOpenAI, azure_client).batches.create(**create_batch_data)
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
async def aretrieve_batch(
|
||||
self,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
client: AsyncAzureOpenAI,
|
||||
) -> LiteLLMBatch:
|
||||
response = await client.batches.retrieve(**retrieve_batch_data)
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
def retrieve_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
):
|
||||
azure_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
litellm_params=litellm_params or {},
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.aretrieve_batch( # type: ignore
|
||||
retrieve_batch_data=retrieve_batch_data, client=azure_client
|
||||
)
|
||||
response = cast(AzureOpenAI, azure_client).batches.retrieve(
|
||||
**retrieve_batch_data
|
||||
)
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
async def acancel_batch(
|
||||
self,
|
||||
cancel_batch_data: CancelBatchRequest,
|
||||
client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
response = await client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
def cancel_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
cancel_batch_data: CancelBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
):
|
||||
azure_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
litellm_params=litellm_params or {},
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
response = azure_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
async def alist_batches(
|
||||
self,
|
||||
client: AsyncAzureOpenAI,
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
):
|
||||
response = await client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
|
||||
def list_batches(
|
||||
self,
|
||||
_is_async: bool,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
):
|
||||
azure_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
litellm_params=litellm_params or {},
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.alist_batches( # type: ignore
|
||||
client=azure_client, after=after, limit=limit
|
||||
)
|
||||
response = azure_client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,311 @@
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
||||
|
||||
from httpx._models import Headers, Response
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
convert_to_azure_openai_messages,
|
||||
)
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.types.llms.azure import (
|
||||
API_VERSION_MONTH_SUPPORTED_RESPONSE_FORMAT,
|
||||
API_VERSION_YEAR_SUPPORTED_RESPONSE_FORMAT,
|
||||
)
|
||||
from litellm.types.utils import ModelResponse
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
from ....exceptions import UnsupportedParamsError
|
||||
from ....types.llms.openai import AllMessageValues
|
||||
from ...base_llm.chat.transformation import BaseConfig
|
||||
from ..common_utils import AzureOpenAIError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
|
||||
LoggingClass = LiteLLMLoggingObj
|
||||
else:
|
||||
LoggingClass = Any
|
||||
|
||||
|
||||
class AzureOpenAIConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
|
||||
|
||||
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. Below are the parameters::
|
||||
|
||||
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
||||
|
||||
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
||||
|
||||
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
||||
|
||||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||||
|
||||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
||||
|
||||
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
||||
|
||||
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
||||
|
||||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||||
|
||||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
||||
|
||||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
function_call: Optional[Union[str, dict]] = None,
|
||||
functions: Optional[list] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
stop: Optional[Union[str, list]] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
"temperature",
|
||||
"n",
|
||||
"stream",
|
||||
"stream_options",
|
||||
"stop",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"presence_penalty",
|
||||
"frequency_penalty",
|
||||
"logit_bias",
|
||||
"user",
|
||||
"function_call",
|
||||
"functions",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"top_p",
|
||||
"logprobs",
|
||||
"top_logprobs",
|
||||
"response_format",
|
||||
"seed",
|
||||
"extra_headers",
|
||||
"parallel_tool_calls",
|
||||
"prediction",
|
||||
"modalities",
|
||||
"audio",
|
||||
]
|
||||
|
||||
def _is_response_format_supported_model(self, model: str) -> bool:
|
||||
"""
|
||||
- all 4o models are supported
|
||||
- check if 'supports_response_format' is True from get_model_info
|
||||
- [TODO] support smart retries for 3.5 models (some supported, some not)
|
||||
"""
|
||||
if "4o" in model:
|
||||
return True
|
||||
elif supports_response_schema(model):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _is_response_format_supported_api_version(
|
||||
self, api_version_year: str, api_version_month: str
|
||||
) -> bool:
|
||||
"""
|
||||
- check if api_version is supported for response_format
|
||||
- returns True if the API version is equal to or newer than the supported version
|
||||
"""
|
||||
api_year = int(api_version_year)
|
||||
api_month = int(api_version_month)
|
||||
supported_year = int(API_VERSION_YEAR_SUPPORTED_RESPONSE_FORMAT)
|
||||
supported_month = int(API_VERSION_MONTH_SUPPORTED_RESPONSE_FORMAT)
|
||||
|
||||
# If the year is greater than supported year, it's definitely supported
|
||||
if api_year > supported_year:
|
||||
return True
|
||||
# If the year is less than supported year, it's not supported
|
||||
elif api_year < supported_year:
|
||||
return False
|
||||
# If same year, check if month is >= supported month
|
||||
else:
|
||||
return api_month >= supported_month
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
api_version: str = "",
|
||||
) -> dict:
|
||||
supported_openai_params = self.get_supported_openai_params(model)
|
||||
|
||||
api_version_times = api_version.split("-")
|
||||
api_version_year = api_version_times[0]
|
||||
api_version_month = api_version_times[1]
|
||||
api_version_day = api_version_times[2]
|
||||
for param, value in non_default_params.items():
|
||||
if param == "tool_choice":
|
||||
"""
|
||||
This parameter requires API version 2023-12-01-preview or later
|
||||
|
||||
tool_choice='required' is not supported as of 2024-05-01-preview
|
||||
"""
|
||||
## check if api version supports this param ##
|
||||
if (
|
||||
api_version_year < "2023"
|
||||
or (api_version_year == "2023" and api_version_month < "12")
|
||||
or (
|
||||
api_version_year == "2023"
|
||||
and api_version_month == "12"
|
||||
and api_version_day < "01"
|
||||
)
|
||||
):
|
||||
if litellm.drop_params is True or (
|
||||
drop_params is not None and drop_params is True
|
||||
):
|
||||
pass
|
||||
else:
|
||||
raise UnsupportedParamsError(
|
||||
status_code=400,
|
||||
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
|
||||
)
|
||||
elif value == "required" and (
|
||||
api_version_year == "2024" and api_version_month <= "05"
|
||||
): ## check if tool_choice value is supported ##
|
||||
if litellm.drop_params is True or (
|
||||
drop_params is not None and drop_params is True
|
||||
):
|
||||
pass
|
||||
else:
|
||||
raise UnsupportedParamsError(
|
||||
status_code=400,
|
||||
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
|
||||
)
|
||||
else:
|
||||
optional_params["tool_choice"] = value
|
||||
elif param == "response_format" and isinstance(value, dict):
|
||||
_is_response_format_supported_model = (
|
||||
self._is_response_format_supported_model(model)
|
||||
)
|
||||
|
||||
is_response_format_supported_api_version = (
|
||||
self._is_response_format_supported_api_version(
|
||||
api_version_year, api_version_month
|
||||
)
|
||||
)
|
||||
is_response_format_supported = (
|
||||
is_response_format_supported_api_version
|
||||
and _is_response_format_supported_model
|
||||
)
|
||||
|
||||
optional_params = self._add_response_format_to_tools(
|
||||
optional_params=optional_params,
|
||||
value=value,
|
||||
is_response_format_supported=is_response_format_supported,
|
||||
)
|
||||
elif param == "tools" and isinstance(value, list):
|
||||
optional_params.setdefault("tools", [])
|
||||
optional_params["tools"].extend(value)
|
||||
elif param in supported_openai_params:
|
||||
optional_params[param] = value
|
||||
|
||||
return optional_params
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
messages = convert_to_azure_openai_messages(messages)
|
||||
return {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LoggingClass,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
raise NotImplementedError(
|
||||
"Azure OpenAI handler.py has custom logic for transforming response, as it uses the OpenAI SDK."
|
||||
)
|
||||
|
||||
def get_mapped_special_auth_params(self) -> dict:
|
||||
return {"token": "azure_ad_token"}
|
||||
|
||||
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "token":
|
||||
optional_params["azure_ad_token"] = value
|
||||
return optional_params
|
||||
|
||||
def get_eu_regions(self) -> List[str]:
|
||||
"""
|
||||
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
|
||||
"""
|
||||
return ["europe", "sweden", "switzerland", "france", "uk"]
|
||||
|
||||
def get_us_regions(self) -> List[str]:
|
||||
"""
|
||||
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
|
||||
"""
|
||||
return [
|
||||
"us",
|
||||
"eastus",
|
||||
"eastus2",
|
||||
"eastus2euap",
|
||||
"eastus3",
|
||||
"southcentralus",
|
||||
"westus",
|
||||
"westus2",
|
||||
"westus3",
|
||||
"westus4",
|
||||
]
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return AzureOpenAIError(
|
||||
message=error_message, status_code=status_code, headers=headers
|
||||
)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
raise NotImplementedError(
|
||||
"Azure OpenAI has custom logic for validating environment, as it uses the OpenAI SDK."
|
||||
)
|
||||
@@ -0,0 +1,72 @@
|
||||
"""
|
||||
Handler file for calls to Azure OpenAI's o1/o3 family of models
|
||||
|
||||
Written separately to handle faking streaming for o1 and o3 models.
|
||||
"""
|
||||
|
||||
from typing import Any, Callable, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ...openai.openai import OpenAIChatCompletion
|
||||
from ..common_utils import BaseAzureLLM
|
||||
|
||||
|
||||
class AzureOpenAIO1ChatCompletion(BaseAzureLLM, OpenAIChatCompletion):
|
||||
def completion(
|
||||
self,
|
||||
model_response: ModelResponse,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
logging_obj: Any,
|
||||
model: Optional[str] = None,
|
||||
messages: Optional[list] = None,
|
||||
print_verbose: Optional[Callable] = None,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
dynamic_params: Optional[bool] = None,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
acompletion: bool = False,
|
||||
logger_fn=None,
|
||||
headers: Optional[dict] = None,
|
||||
custom_prompt_dict: dict = {},
|
||||
client=None,
|
||||
organization: Optional[str] = None,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
drop_params: Optional[bool] = None,
|
||||
):
|
||||
client = self.get_azure_openai_client(
|
||||
litellm_params=litellm_params,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=acompletion,
|
||||
)
|
||||
return super().completion(
|
||||
model_response=model_response,
|
||||
timeout=timeout,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logging_obj=logging_obj,
|
||||
model=model,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
dynamic_params=dynamic_params,
|
||||
azure_ad_token=azure_ad_token,
|
||||
acompletion=acompletion,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
client=client,
|
||||
organization=organization,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
drop_params=drop_params,
|
||||
)
|
||||
@@ -0,0 +1,97 @@
|
||||
"""
|
||||
Support for o1 and o3 model families
|
||||
|
||||
https://platform.openai.com/docs/guides/reasoning
|
||||
|
||||
Translations handled by LiteLLM:
|
||||
- modalities: image => drop param (if user opts in to dropping param)
|
||||
- role: system ==> translate to role 'user'
|
||||
- streaming => faked by LiteLLM
|
||||
- Tools, response_format => drop param (if user opts in to dropping param)
|
||||
- Logprobs => drop param (if user opts in to dropping param)
|
||||
- Temperature => drop param (if user opts in to dropping param)
|
||||
"""
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import litellm
|
||||
from litellm import verbose_logger
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.utils import get_model_info
|
||||
|
||||
from ...openai.chat.o_series_transformation import OpenAIOSeriesConfig
|
||||
|
||||
|
||||
class AzureOpenAIO1Config(OpenAIOSeriesConfig):
|
||||
def get_supported_openai_params(self, model: str) -> list:
|
||||
"""
|
||||
Get the supported OpenAI params for the Azure O-Series models
|
||||
"""
|
||||
all_openai_params = litellm.OpenAIGPTConfig().get_supported_openai_params(
|
||||
model=model
|
||||
)
|
||||
non_supported_params = [
|
||||
"logprobs",
|
||||
"top_p",
|
||||
"presence_penalty",
|
||||
"frequency_penalty",
|
||||
"top_logprobs",
|
||||
]
|
||||
|
||||
o_series_only_param = ["reasoning_effort"]
|
||||
all_openai_params.extend(o_series_only_param)
|
||||
return [
|
||||
param for param in all_openai_params if param not in non_supported_params
|
||||
]
|
||||
|
||||
def should_fake_stream(
|
||||
self,
|
||||
model: Optional[str],
|
||||
stream: Optional[bool],
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Currently no Azure O Series models support native streaming.
|
||||
"""
|
||||
|
||||
if stream is not True:
|
||||
return False
|
||||
|
||||
if (
|
||||
model and "o3" in model
|
||||
): # o3 models support streaming - https://github.com/BerriAI/litellm/issues/8274
|
||||
return False
|
||||
|
||||
if model is not None:
|
||||
try:
|
||||
model_info = get_model_info(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
) # allow user to override default with model_info={"supports_native_streaming": true}
|
||||
|
||||
if (
|
||||
model_info.get("supports_native_streaming") is True
|
||||
): # allow user to override default with model_info={"supports_native_streaming": true}
|
||||
return False
|
||||
except Exception as e:
|
||||
verbose_logger.debug(
|
||||
f"Error getting model info in AzureOpenAIO1Config: {e}"
|
||||
)
|
||||
return True
|
||||
|
||||
def is_o_series_model(self, model: str) -> bool:
|
||||
return "o1" in model or "o3" in model or "o4" in model or "o_series/" in model
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
model = model.replace(
|
||||
"o_series/", ""
|
||||
) # handle o_series/my-random-deployment-name
|
||||
return super().transform_request(
|
||||
model, messages, optional_params, litellm_params, headers
|
||||
)
|
||||
@@ -0,0 +1,438 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Callable, Dict, Optional, Union
|
||||
|
||||
import httpx
|
||||
from openai import AsyncAzureOpenAI, AzureOpenAI
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.caching.caching import DualCache
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.llms.openai.common_utils import BaseOpenAILLM
|
||||
from litellm.secret_managers.get_azure_ad_token_provider import (
|
||||
get_azure_ad_token_provider,
|
||||
)
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
|
||||
azure_ad_cache = DualCache()
|
||||
|
||||
|
||||
class AzureOpenAIError(BaseLLMException):
|
||||
def __init__(
|
||||
self,
|
||||
status_code,
|
||||
message,
|
||||
request: Optional[httpx.Request] = None,
|
||||
response: Optional[httpx.Response] = None,
|
||||
headers: Optional[Union[httpx.Headers, dict]] = None,
|
||||
body: Optional[dict] = None,
|
||||
):
|
||||
super().__init__(
|
||||
status_code=status_code,
|
||||
message=message,
|
||||
request=request,
|
||||
response=response,
|
||||
headers=headers,
|
||||
body=body,
|
||||
)
|
||||
|
||||
|
||||
def process_azure_headers(headers: Union[httpx.Headers, dict]) -> dict:
|
||||
openai_headers = {}
|
||||
if "x-ratelimit-limit-requests" in headers:
|
||||
openai_headers["x-ratelimit-limit-requests"] = headers[
|
||||
"x-ratelimit-limit-requests"
|
||||
]
|
||||
if "x-ratelimit-remaining-requests" in headers:
|
||||
openai_headers["x-ratelimit-remaining-requests"] = headers[
|
||||
"x-ratelimit-remaining-requests"
|
||||
]
|
||||
if "x-ratelimit-limit-tokens" in headers:
|
||||
openai_headers["x-ratelimit-limit-tokens"] = headers["x-ratelimit-limit-tokens"]
|
||||
if "x-ratelimit-remaining-tokens" in headers:
|
||||
openai_headers["x-ratelimit-remaining-tokens"] = headers[
|
||||
"x-ratelimit-remaining-tokens"
|
||||
]
|
||||
llm_response_headers = {
|
||||
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
|
||||
}
|
||||
|
||||
return {**llm_response_headers, **openai_headers}
|
||||
|
||||
|
||||
def get_azure_ad_token_from_entra_id(
|
||||
tenant_id: str,
|
||||
client_id: str,
|
||||
client_secret: str,
|
||||
scope: str = "https://cognitiveservices.azure.com/.default",
|
||||
) -> Callable[[], str]:
|
||||
"""
|
||||
Get Azure AD token provider from `client_id`, `client_secret`, and `tenant_id`
|
||||
|
||||
Args:
|
||||
tenant_id: str
|
||||
client_id: str
|
||||
client_secret: str
|
||||
scope: str
|
||||
|
||||
Returns:
|
||||
callable that returns a bearer token.
|
||||
"""
|
||||
from azure.identity import ClientSecretCredential, get_bearer_token_provider
|
||||
|
||||
verbose_logger.debug("Getting Azure AD Token from Entra ID")
|
||||
|
||||
if tenant_id.startswith("os.environ/"):
|
||||
_tenant_id = get_secret_str(tenant_id)
|
||||
else:
|
||||
_tenant_id = tenant_id
|
||||
|
||||
if client_id.startswith("os.environ/"):
|
||||
_client_id = get_secret_str(client_id)
|
||||
else:
|
||||
_client_id = client_id
|
||||
|
||||
if client_secret.startswith("os.environ/"):
|
||||
_client_secret = get_secret_str(client_secret)
|
||||
else:
|
||||
_client_secret = client_secret
|
||||
|
||||
verbose_logger.debug(
|
||||
"tenant_id %s, client_id %s, client_secret %s",
|
||||
_tenant_id,
|
||||
_client_id,
|
||||
_client_secret,
|
||||
)
|
||||
if _tenant_id is None or _client_id is None or _client_secret is None:
|
||||
raise ValueError("tenant_id, client_id, and client_secret must be provided")
|
||||
credential = ClientSecretCredential(_tenant_id, _client_id, _client_secret)
|
||||
|
||||
verbose_logger.debug("credential %s", credential)
|
||||
|
||||
token_provider = get_bearer_token_provider(credential, scope)
|
||||
|
||||
verbose_logger.debug("token_provider %s", token_provider)
|
||||
|
||||
return token_provider
|
||||
|
||||
|
||||
def get_azure_ad_token_from_username_password(
|
||||
client_id: str,
|
||||
azure_username: str,
|
||||
azure_password: str,
|
||||
scope: str = "https://cognitiveservices.azure.com/.default",
|
||||
) -> Callable[[], str]:
|
||||
"""
|
||||
Get Azure AD token provider from `client_id`, `azure_username`, and `azure_password`
|
||||
|
||||
Args:
|
||||
client_id: str
|
||||
azure_username: str
|
||||
azure_password: str
|
||||
scope: str
|
||||
|
||||
Returns:
|
||||
callable that returns a bearer token.
|
||||
"""
|
||||
from azure.identity import UsernamePasswordCredential, get_bearer_token_provider
|
||||
|
||||
verbose_logger.debug(
|
||||
"client_id %s, azure_username %s, azure_password %s",
|
||||
client_id,
|
||||
azure_username,
|
||||
azure_password,
|
||||
)
|
||||
credential = UsernamePasswordCredential(
|
||||
client_id=client_id,
|
||||
username=azure_username,
|
||||
password=azure_password,
|
||||
)
|
||||
|
||||
verbose_logger.debug("credential %s", credential)
|
||||
|
||||
token_provider = get_bearer_token_provider(credential, scope)
|
||||
|
||||
verbose_logger.debug("token_provider %s", token_provider)
|
||||
|
||||
return token_provider
|
||||
|
||||
|
||||
def get_azure_ad_token_from_oidc(azure_ad_token: str):
|
||||
azure_client_id = os.getenv("AZURE_CLIENT_ID", None)
|
||||
azure_tenant_id = os.getenv("AZURE_TENANT_ID", None)
|
||||
azure_authority_host = os.getenv(
|
||||
"AZURE_AUTHORITY_HOST", "https://login.microsoftonline.com"
|
||||
)
|
||||
|
||||
if azure_client_id is None or azure_tenant_id is None:
|
||||
raise AzureOpenAIError(
|
||||
status_code=422,
|
||||
message="AZURE_CLIENT_ID and AZURE_TENANT_ID must be set",
|
||||
)
|
||||
|
||||
oidc_token = get_secret_str(azure_ad_token)
|
||||
|
||||
if oidc_token is None:
|
||||
raise AzureOpenAIError(
|
||||
status_code=401,
|
||||
message="OIDC token could not be retrieved from secret manager.",
|
||||
)
|
||||
|
||||
azure_ad_token_cache_key = json.dumps(
|
||||
{
|
||||
"azure_client_id": azure_client_id,
|
||||
"azure_tenant_id": azure_tenant_id,
|
||||
"azure_authority_host": azure_authority_host,
|
||||
"oidc_token": oidc_token,
|
||||
}
|
||||
)
|
||||
|
||||
azure_ad_token_access_token = azure_ad_cache.get_cache(azure_ad_token_cache_key)
|
||||
if azure_ad_token_access_token is not None:
|
||||
return azure_ad_token_access_token
|
||||
|
||||
client = litellm.module_level_client
|
||||
req_token = client.post(
|
||||
f"{azure_authority_host}/{azure_tenant_id}/oauth2/v2.0/token",
|
||||
data={
|
||||
"client_id": azure_client_id,
|
||||
"grant_type": "client_credentials",
|
||||
"scope": "https://cognitiveservices.azure.com/.default",
|
||||
"client_assertion_type": "urn:ietf:params:oauth:client-assertion-type:jwt-bearer",
|
||||
"client_assertion": oidc_token,
|
||||
},
|
||||
)
|
||||
|
||||
if req_token.status_code != 200:
|
||||
raise AzureOpenAIError(
|
||||
status_code=req_token.status_code,
|
||||
message=req_token.text,
|
||||
)
|
||||
|
||||
azure_ad_token_json = req_token.json()
|
||||
azure_ad_token_access_token = azure_ad_token_json.get("access_token", None)
|
||||
azure_ad_token_expires_in = azure_ad_token_json.get("expires_in", None)
|
||||
|
||||
if azure_ad_token_access_token is None:
|
||||
raise AzureOpenAIError(
|
||||
status_code=422, message="Azure AD Token access_token not returned"
|
||||
)
|
||||
|
||||
if azure_ad_token_expires_in is None:
|
||||
raise AzureOpenAIError(
|
||||
status_code=422, message="Azure AD Token expires_in not returned"
|
||||
)
|
||||
|
||||
azure_ad_cache.set_cache(
|
||||
key=azure_ad_token_cache_key,
|
||||
value=azure_ad_token_access_token,
|
||||
ttl=azure_ad_token_expires_in,
|
||||
)
|
||||
|
||||
return azure_ad_token_access_token
|
||||
|
||||
|
||||
def select_azure_base_url_or_endpoint(azure_client_params: dict):
|
||||
azure_endpoint = azure_client_params.get("azure_endpoint", None)
|
||||
if azure_endpoint is not None:
|
||||
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
|
||||
if "/openai/deployments" in azure_endpoint:
|
||||
# this is base_url, not an azure_endpoint
|
||||
azure_client_params["base_url"] = azure_endpoint
|
||||
azure_client_params.pop("azure_endpoint")
|
||||
|
||||
return azure_client_params
|
||||
|
||||
|
||||
class BaseAzureLLM(BaseOpenAILLM):
|
||||
def get_azure_openai_client(
|
||||
self,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
_is_async: bool = False,
|
||||
model: Optional[str] = None,
|
||||
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
|
||||
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
|
||||
client_initialization_params: dict = locals()
|
||||
if client is None:
|
||||
cached_client = self.get_cached_openai_client(
|
||||
client_initialization_params=client_initialization_params,
|
||||
client_type="azure",
|
||||
)
|
||||
if cached_client:
|
||||
if isinstance(cached_client, AzureOpenAI) or isinstance(
|
||||
cached_client, AsyncAzureOpenAI
|
||||
):
|
||||
return cached_client
|
||||
|
||||
azure_client_params = self.initialize_azure_sdk_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
model_name=model,
|
||||
api_version=api_version,
|
||||
is_async=_is_async,
|
||||
)
|
||||
if _is_async is True:
|
||||
openai_client = AsyncAzureOpenAI(**azure_client_params)
|
||||
else:
|
||||
openai_client = AzureOpenAI(**azure_client_params) # type: ignore
|
||||
else:
|
||||
openai_client = client
|
||||
if api_version is not None and isinstance(
|
||||
openai_client._custom_query, dict
|
||||
):
|
||||
# set api_version to version passed by user
|
||||
openai_client._custom_query.setdefault("api-version", api_version)
|
||||
|
||||
# save client in-memory cache
|
||||
self.set_cached_openai_client(
|
||||
openai_client=openai_client,
|
||||
client_initialization_params=client_initialization_params,
|
||||
client_type="azure",
|
||||
)
|
||||
return openai_client
|
||||
|
||||
def initialize_azure_sdk_client(
|
||||
self,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
model_name: Optional[str],
|
||||
api_version: Optional[str],
|
||||
is_async: bool,
|
||||
) -> dict:
|
||||
azure_ad_token_provider: Optional[Callable[[], str]] = None
|
||||
# If we have api_key, then we have higher priority
|
||||
azure_ad_token = litellm_params.get("azure_ad_token")
|
||||
tenant_id = litellm_params.get("tenant_id", os.getenv("AZURE_TENANT_ID"))
|
||||
client_id = litellm_params.get("client_id", os.getenv("AZURE_CLIENT_ID"))
|
||||
client_secret = litellm_params.get(
|
||||
"client_secret", os.getenv("AZURE_CLIENT_SECRET")
|
||||
)
|
||||
azure_username = litellm_params.get(
|
||||
"azure_username", os.getenv("AZURE_USERNAME")
|
||||
)
|
||||
azure_password = litellm_params.get(
|
||||
"azure_password", os.getenv("AZURE_PASSWORD")
|
||||
)
|
||||
max_retries = litellm_params.get("max_retries")
|
||||
timeout = litellm_params.get("timeout")
|
||||
if not api_key and tenant_id and client_id and client_secret:
|
||||
verbose_logger.debug(
|
||||
"Using Azure AD Token Provider from Entra ID for Azure Auth"
|
||||
)
|
||||
azure_ad_token_provider = get_azure_ad_token_from_entra_id(
|
||||
tenant_id=tenant_id,
|
||||
client_id=client_id,
|
||||
client_secret=client_secret,
|
||||
)
|
||||
if azure_username and azure_password and client_id:
|
||||
verbose_logger.debug("Using Azure Username and Password for Azure Auth")
|
||||
azure_ad_token_provider = get_azure_ad_token_from_username_password(
|
||||
azure_username=azure_username,
|
||||
azure_password=azure_password,
|
||||
client_id=client_id,
|
||||
)
|
||||
|
||||
if azure_ad_token is not None and azure_ad_token.startswith("oidc/"):
|
||||
verbose_logger.debug("Using Azure OIDC Token for Azure Auth")
|
||||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||||
elif (
|
||||
not api_key
|
||||
and azure_ad_token_provider is None
|
||||
and litellm.enable_azure_ad_token_refresh is True
|
||||
):
|
||||
verbose_logger.debug(
|
||||
"Using Azure AD token provider based on Service Principal with Secret workflow for Azure Auth"
|
||||
)
|
||||
try:
|
||||
azure_ad_token_provider = get_azure_ad_token_provider()
|
||||
except ValueError:
|
||||
verbose_logger.debug("Azure AD Token Provider could not be used.")
|
||||
if api_version is None:
|
||||
api_version = os.getenv(
|
||||
"AZURE_API_VERSION", litellm.AZURE_DEFAULT_API_VERSION
|
||||
)
|
||||
|
||||
_api_key = api_key
|
||||
if _api_key is not None and isinstance(_api_key, str):
|
||||
# only show first 5 chars of api_key
|
||||
_api_key = _api_key[:8] + "*" * 15
|
||||
verbose_logger.debug(
|
||||
f"Initializing Azure OpenAI Client for {model_name}, Api Base: {str(api_base)}, Api Key:{_api_key}"
|
||||
)
|
||||
azure_client_params = {
|
||||
"api_key": api_key,
|
||||
"azure_endpoint": api_base,
|
||||
"api_version": api_version,
|
||||
"azure_ad_token": azure_ad_token,
|
||||
"azure_ad_token_provider": azure_ad_token_provider,
|
||||
}
|
||||
# init http client + SSL Verification settings
|
||||
if is_async is True:
|
||||
azure_client_params["http_client"] = self._get_async_http_client()
|
||||
else:
|
||||
azure_client_params["http_client"] = self._get_sync_http_client()
|
||||
|
||||
if max_retries is not None:
|
||||
azure_client_params["max_retries"] = max_retries
|
||||
if timeout is not None:
|
||||
azure_client_params["timeout"] = timeout
|
||||
|
||||
if azure_ad_token_provider is not None:
|
||||
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider
|
||||
# this decides if we should set azure_endpoint or base_url on Azure OpenAI Client
|
||||
# required to support GPT-4 vision enhancements, since base_url needs to be set on Azure OpenAI Client
|
||||
|
||||
azure_client_params = select_azure_base_url_or_endpoint(
|
||||
azure_client_params=azure_client_params
|
||||
)
|
||||
|
||||
return azure_client_params
|
||||
|
||||
def _init_azure_client_for_cloudflare_ai_gateway(
|
||||
self,
|
||||
api_base: str,
|
||||
model: str,
|
||||
api_version: str,
|
||||
max_retries: int,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
api_key: Optional[str],
|
||||
azure_ad_token: Optional[str],
|
||||
azure_ad_token_provider: Optional[Callable[[], str]],
|
||||
acompletion: bool,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
) -> Union[AzureOpenAI, AsyncAzureOpenAI]:
|
||||
## build base url - assume api base includes resource name
|
||||
if client is None:
|
||||
if not api_base.endswith("/"):
|
||||
api_base += "/"
|
||||
api_base += f"{model}"
|
||||
|
||||
azure_client_params: Dict[str, Any] = {
|
||||
"api_version": api_version,
|
||||
"base_url": f"{api_base}",
|
||||
"http_client": litellm.client_session,
|
||||
"max_retries": max_retries,
|
||||
"timeout": timeout,
|
||||
}
|
||||
if api_key is not None:
|
||||
azure_client_params["api_key"] = api_key
|
||||
elif azure_ad_token is not None:
|
||||
if azure_ad_token.startswith("oidc/"):
|
||||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||||
|
||||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||||
if azure_ad_token_provider is not None:
|
||||
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider
|
||||
|
||||
if acompletion is True:
|
||||
client = AsyncAzureOpenAI(**azure_client_params) # type: ignore
|
||||
else:
|
||||
client = AzureOpenAI(**azure_client_params) # type: ignore
|
||||
return client
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,378 @@
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
from openai import AsyncAzureOpenAI, AzureOpenAI
|
||||
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, TextCompletionResponse
|
||||
|
||||
from ...openai.completion.transformation import OpenAITextCompletionConfig
|
||||
from ..common_utils import AzureOpenAIError, BaseAzureLLM
|
||||
|
||||
openai_text_completion_config = OpenAITextCompletionConfig()
|
||||
|
||||
|
||||
class AzureTextCompletion(BaseAzureLLM):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def validate_environment(self, api_key, azure_ad_token):
|
||||
headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key is not None:
|
||||
headers["api-key"] = api_key
|
||||
elif azure_ad_token is not None:
|
||||
headers["Authorization"] = f"Bearer {azure_ad_token}"
|
||||
return headers
|
||||
|
||||
def completion( # noqa: PLR0915
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
api_key: str,
|
||||
api_base: str,
|
||||
api_version: str,
|
||||
api_type: str,
|
||||
azure_ad_token: str,
|
||||
azure_ad_token_provider: Optional[Callable],
|
||||
print_verbose: Callable,
|
||||
timeout,
|
||||
logging_obj,
|
||||
optional_params,
|
||||
litellm_params,
|
||||
logger_fn,
|
||||
acompletion: bool = False,
|
||||
headers: Optional[dict] = None,
|
||||
client=None,
|
||||
):
|
||||
try:
|
||||
if model is None or messages is None:
|
||||
raise AzureOpenAIError(
|
||||
status_code=422, message="Missing model or messages"
|
||||
)
|
||||
|
||||
max_retries = optional_params.pop("max_retries", 2)
|
||||
prompt = prompt_factory(
|
||||
messages=messages, model=model, custom_llm_provider="azure_text"
|
||||
)
|
||||
|
||||
### CHECK IF CLOUDFLARE AI GATEWAY ###
|
||||
### if so - set the model as part of the base url
|
||||
if "gateway.ai.cloudflare.com" in api_base:
|
||||
## build base url - assume api base includes resource name
|
||||
client = self._init_azure_client_for_cloudflare_ai_gateway(
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
api_base=api_base,
|
||||
model=model,
|
||||
client=client,
|
||||
max_retries=max_retries,
|
||||
timeout=timeout,
|
||||
azure_ad_token=azure_ad_token,
|
||||
azure_ad_token_provider=azure_ad_token_provider,
|
||||
acompletion=acompletion,
|
||||
)
|
||||
|
||||
data = {"model": None, "prompt": prompt, **optional_params}
|
||||
else:
|
||||
data = {
|
||||
"model": model, # type: ignore
|
||||
"prompt": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
if acompletion is True:
|
||||
if optional_params.get("stream", False):
|
||||
return self.async_streaming(
|
||||
logging_obj=logging_obj,
|
||||
api_base=api_base,
|
||||
data=data,
|
||||
model=model,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
azure_ad_token=azure_ad_token,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
else:
|
||||
return self.acompletion(
|
||||
api_base=api_base,
|
||||
data=data,
|
||||
model_response=model_response,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
model=model,
|
||||
azure_ad_token=azure_ad_token,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
logging_obj=logging_obj,
|
||||
max_retries=max_retries,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
elif "stream" in optional_params and optional_params["stream"] is True:
|
||||
return self.streaming(
|
||||
logging_obj=logging_obj,
|
||||
api_base=api_base,
|
||||
data=data,
|
||||
model=model,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
azure_ad_token=azure_ad_token,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"headers": {
|
||||
"api_key": api_key,
|
||||
"azure_ad_token": azure_ad_token,
|
||||
},
|
||||
"api_version": api_version,
|
||||
"api_base": api_base,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
if not isinstance(max_retries, int):
|
||||
raise AzureOpenAIError(
|
||||
status_code=422, message="max retries must be an int"
|
||||
)
|
||||
# init AzureOpenAI Client
|
||||
azure_client = self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
_is_async=False,
|
||||
model=model,
|
||||
)
|
||||
|
||||
if not isinstance(azure_client, AzureOpenAI):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="azure_client is not an instance of AzureOpenAI",
|
||||
)
|
||||
|
||||
raw_response = azure_client.completions.with_raw_response.create(
|
||||
**data, timeout=timeout
|
||||
)
|
||||
response = raw_response.parse()
|
||||
stringified_response = response.model_dump()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=stringified_response,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_version": api_version,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
return (
|
||||
openai_text_completion_config.convert_to_chat_model_response_object(
|
||||
response_object=TextCompletionResponse(**stringified_response),
|
||||
model_response_object=model_response,
|
||||
)
|
||||
)
|
||||
except AzureOpenAIError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise AzureOpenAIError(
|
||||
status_code=status_code, message=str(e), headers=error_headers
|
||||
)
|
||||
|
||||
async def acompletion(
|
||||
self,
|
||||
api_key: str,
|
||||
api_version: str,
|
||||
model: str,
|
||||
api_base: str,
|
||||
data: dict,
|
||||
timeout: Any,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: Any,
|
||||
max_retries: int,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
client=None, # this is the AsyncAzureOpenAI
|
||||
litellm_params: dict = {},
|
||||
):
|
||||
response = None
|
||||
try:
|
||||
# init AzureOpenAI Client
|
||||
# setting Azure client
|
||||
azure_client = self.get_azure_openai_client(
|
||||
api_version=api_version,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
model=model,
|
||||
_is_async=True,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="azure_client is not an instance of AsyncAzureOpenAI",
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data["prompt"],
|
||||
api_key=azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
||||
"api_base": azure_client._base_url._uri_reference,
|
||||
"acompletion": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
raw_response = await azure_client.completions.with_raw_response.create(
|
||||
**data, timeout=timeout
|
||||
)
|
||||
response = raw_response.parse()
|
||||
return openai_text_completion_config.convert_to_chat_model_response_object(
|
||||
response_object=response.model_dump(),
|
||||
model_response_object=model_response,
|
||||
)
|
||||
except AzureOpenAIError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise AzureOpenAIError(
|
||||
status_code=status_code, message=str(e), headers=error_headers
|
||||
)
|
||||
|
||||
def streaming(
|
||||
self,
|
||||
logging_obj,
|
||||
api_base: str,
|
||||
api_key: str,
|
||||
api_version: str,
|
||||
data: dict,
|
||||
model: str,
|
||||
timeout: Any,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
client=None,
|
||||
litellm_params: dict = {},
|
||||
):
|
||||
max_retries = data.pop("max_retries", 2)
|
||||
if not isinstance(max_retries, int):
|
||||
raise AzureOpenAIError(
|
||||
status_code=422, message="max retries must be an int"
|
||||
)
|
||||
# init AzureOpenAI Client
|
||||
azure_client = self.get_azure_openai_client(
|
||||
api_version=api_version,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
model=model,
|
||||
_is_async=False,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
if not isinstance(azure_client, AzureOpenAI):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="azure_client is not an instance of AzureOpenAI",
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data["prompt"],
|
||||
api_key=azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
||||
"api_base": azure_client._base_url._uri_reference,
|
||||
"acompletion": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
raw_response = azure_client.completions.with_raw_response.create(
|
||||
**data, timeout=timeout
|
||||
)
|
||||
response = raw_response.parse()
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=response,
|
||||
model=model,
|
||||
custom_llm_provider="azure_text",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return streamwrapper
|
||||
|
||||
async def async_streaming(
|
||||
self,
|
||||
logging_obj,
|
||||
api_base: str,
|
||||
api_key: str,
|
||||
api_version: str,
|
||||
data: dict,
|
||||
model: str,
|
||||
timeout: Any,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
client=None,
|
||||
litellm_params: dict = {},
|
||||
):
|
||||
try:
|
||||
# init AzureOpenAI Client
|
||||
azure_client = self.get_azure_openai_client(
|
||||
api_version=api_version,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
model=model,
|
||||
_is_async=True,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise AzureOpenAIError(
|
||||
status_code=500,
|
||||
message="azure_client is not an instance of AsyncAzureOpenAI",
|
||||
)
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data["prompt"],
|
||||
api_key=azure_client.api_key,
|
||||
additional_args={
|
||||
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
||||
"api_base": azure_client._base_url._uri_reference,
|
||||
"acompletion": True,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
raw_response = await azure_client.completions.with_raw_response.create(
|
||||
**data, timeout=timeout
|
||||
)
|
||||
response = raw_response.parse()
|
||||
# return response
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=response,
|
||||
model=model,
|
||||
custom_llm_provider="azure_text",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise AzureOpenAIError(
|
||||
status_code=status_code, message=str(e), headers=error_headers
|
||||
)
|
||||
@@ -0,0 +1,53 @@
|
||||
from typing import Optional, Union
|
||||
|
||||
from ...openai.completion.transformation import OpenAITextCompletionConfig
|
||||
|
||||
|
||||
class AzureOpenAITextConfig(OpenAITextCompletionConfig):
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
||||
|
||||
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
|
||||
|
||||
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
||||
|
||||
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
||||
|
||||
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
||||
|
||||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||||
|
||||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
||||
|
||||
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
||||
|
||||
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
||||
|
||||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||||
|
||||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
||||
|
||||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
stop: Optional[Union[str, list]] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
stop=stop,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
)
|
||||
@@ -0,0 +1,61 @@
|
||||
"""
|
||||
Helper util for handling azure openai-specific cost calculation
|
||||
- e.g.: prompt caching
|
||||
"""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.types.utils import Usage
|
||||
from litellm.utils import get_model_info
|
||||
|
||||
|
||||
def cost_per_token(
|
||||
model: str, usage: Usage, response_time_ms: Optional[float] = 0.0
|
||||
) -> Tuple[float, float]:
|
||||
"""
|
||||
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
|
||||
|
||||
Input:
|
||||
- model: str, the model name without provider prefix
|
||||
- usage: LiteLLM Usage block, containing anthropic caching information
|
||||
|
||||
Returns:
|
||||
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
|
||||
"""
|
||||
## GET MODEL INFO
|
||||
model_info = get_model_info(model=model, custom_llm_provider="azure")
|
||||
cached_tokens: Optional[int] = None
|
||||
## CALCULATE INPUT COST
|
||||
non_cached_text_tokens = usage.prompt_tokens
|
||||
if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
|
||||
cached_tokens = usage.prompt_tokens_details.cached_tokens
|
||||
non_cached_text_tokens = non_cached_text_tokens - cached_tokens
|
||||
prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"]
|
||||
|
||||
## CALCULATE OUTPUT COST
|
||||
completion_cost: float = (
|
||||
usage["completion_tokens"] * model_info["output_cost_per_token"]
|
||||
)
|
||||
|
||||
## Prompt Caching cost calculation
|
||||
if model_info.get("cache_read_input_token_cost") is not None and cached_tokens:
|
||||
# Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens
|
||||
prompt_cost += cached_tokens * (
|
||||
model_info.get("cache_read_input_token_cost", 0) or 0
|
||||
)
|
||||
|
||||
## Speech / Audio cost calculation
|
||||
if (
|
||||
"output_cost_per_second" in model_info
|
||||
and model_info["output_cost_per_second"] is not None
|
||||
and response_time_ms is not None
|
||||
):
|
||||
verbose_logger.debug(
|
||||
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}"
|
||||
)
|
||||
## COST PER SECOND ##
|
||||
prompt_cost = 0
|
||||
completion_cost = model_info["output_cost_per_second"] * response_time_ms / 1000
|
||||
|
||||
return prompt_cost, completion_cost
|
||||
Binary file not shown.
@@ -0,0 +1,283 @@
|
||||
from typing import Any, Coroutine, Optional, Union, cast
|
||||
|
||||
import httpx
|
||||
from openai import AsyncAzureOpenAI, AzureOpenAI
|
||||
from openai.types.file_deleted import FileDeleted
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.types.llms.openai import *
|
||||
|
||||
from ..common_utils import BaseAzureLLM
|
||||
|
||||
|
||||
class AzureOpenAIFilesAPI(BaseAzureLLM):
|
||||
"""
|
||||
AzureOpenAI methods to support for batches
|
||||
- create_file()
|
||||
- retrieve_file()
|
||||
- list_files()
|
||||
- delete_file()
|
||||
- file_content()
|
||||
- update_file()
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
async def acreate_file(
|
||||
self,
|
||||
create_file_data: CreateFileRequest,
|
||||
openai_client: AsyncAzureOpenAI,
|
||||
) -> OpenAIFileObject:
|
||||
verbose_logger.debug("create_file_data=%s", create_file_data)
|
||||
response = await openai_client.files.create(**create_file_data)
|
||||
verbose_logger.debug("create_file_response=%s", response)
|
||||
return OpenAIFileObject(**response.model_dump())
|
||||
|
||||
def create_file(
|
||||
self,
|
||||
_is_async: bool,
|
||||
create_file_data: CreateFileRequest,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
) -> Union[OpenAIFileObject, Coroutine[Any, Any, OpenAIFileObject]]:
|
||||
openai_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
||||
)
|
||||
return self.acreate_file(
|
||||
create_file_data=create_file_data, openai_client=openai_client
|
||||
)
|
||||
response = cast(AzureOpenAI, openai_client).files.create(**create_file_data)
|
||||
return OpenAIFileObject(**response.model_dump())
|
||||
|
||||
async def afile_content(
|
||||
self,
|
||||
file_content_request: FileContentRequest,
|
||||
openai_client: AsyncAzureOpenAI,
|
||||
) -> HttpxBinaryResponseContent:
|
||||
response = await openai_client.files.content(**file_content_request)
|
||||
return HttpxBinaryResponseContent(response=response.response)
|
||||
|
||||
def file_content(
|
||||
self,
|
||||
_is_async: bool,
|
||||
file_content_request: FileContentRequest,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
) -> Union[
|
||||
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
|
||||
]:
|
||||
openai_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
||||
)
|
||||
return self.afile_content( # type: ignore
|
||||
file_content_request=file_content_request,
|
||||
openai_client=openai_client,
|
||||
)
|
||||
response = cast(AzureOpenAI, openai_client).files.content(
|
||||
**file_content_request
|
||||
)
|
||||
|
||||
return HttpxBinaryResponseContent(response=response.response)
|
||||
|
||||
async def aretrieve_file(
|
||||
self,
|
||||
file_id: str,
|
||||
openai_client: AsyncAzureOpenAI,
|
||||
) -> FileObject:
|
||||
response = await openai_client.files.retrieve(file_id=file_id)
|
||||
return response
|
||||
|
||||
def retrieve_file(
|
||||
self,
|
||||
_is_async: bool,
|
||||
file_id: str,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
):
|
||||
openai_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
||||
)
|
||||
return self.aretrieve_file( # type: ignore
|
||||
file_id=file_id,
|
||||
openai_client=openai_client,
|
||||
)
|
||||
response = openai_client.files.retrieve(file_id=file_id)
|
||||
|
||||
return response
|
||||
|
||||
async def adelete_file(
|
||||
self,
|
||||
file_id: str,
|
||||
openai_client: AsyncAzureOpenAI,
|
||||
) -> FileDeleted:
|
||||
response = await openai_client.files.delete(file_id=file_id)
|
||||
|
||||
if not isinstance(response, FileDeleted): # azure returns an empty string
|
||||
return FileDeleted(id=file_id, deleted=True, object="file")
|
||||
return response
|
||||
|
||||
def delete_file(
|
||||
self,
|
||||
_is_async: bool,
|
||||
file_id: str,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
):
|
||||
openai_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
||||
)
|
||||
return self.adelete_file( # type: ignore
|
||||
file_id=file_id,
|
||||
openai_client=openai_client,
|
||||
)
|
||||
response = openai_client.files.delete(file_id=file_id)
|
||||
|
||||
if not isinstance(response, FileDeleted): # azure returns an empty string
|
||||
return FileDeleted(id=file_id, deleted=True, object="file")
|
||||
|
||||
return response
|
||||
|
||||
async def alist_files(
|
||||
self,
|
||||
openai_client: AsyncAzureOpenAI,
|
||||
purpose: Optional[str] = None,
|
||||
):
|
||||
if isinstance(purpose, str):
|
||||
response = await openai_client.files.list(purpose=purpose)
|
||||
else:
|
||||
response = await openai_client.files.list()
|
||||
return response
|
||||
|
||||
def list_files(
|
||||
self,
|
||||
_is_async: bool,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
purpose: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
):
|
||||
openai_client: Optional[
|
||||
Union[AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = self.get_azure_openai_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
if openai_client is None:
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
||||
)
|
||||
return self.alist_files( # type: ignore
|
||||
purpose=purpose,
|
||||
openai_client=openai_client,
|
||||
)
|
||||
|
||||
if isinstance(purpose, str):
|
||||
response = openai_client.files.list(purpose=purpose)
|
||||
else:
|
||||
response = openai_client.files.list()
|
||||
|
||||
return response
|
||||
Binary file not shown.
@@ -0,0 +1,40 @@
|
||||
from typing import Optional, Union
|
||||
|
||||
import httpx
|
||||
from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI
|
||||
|
||||
from litellm.llms.azure.common_utils import BaseAzureLLM
|
||||
from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI
|
||||
|
||||
|
||||
class AzureOpenAIFineTuningAPI(OpenAIFineTuningAPI, BaseAzureLLM):
|
||||
"""
|
||||
AzureOpenAI methods to support fine tuning, inherits from OpenAIFineTuningAPI.
|
||||
"""
|
||||
|
||||
def get_openai_client(
|
||||
self,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str],
|
||||
client: Optional[
|
||||
Union[OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI]
|
||||
] = None,
|
||||
_is_async: bool = False,
|
||||
api_version: Optional[str] = None,
|
||||
litellm_params: Optional[dict] = None,
|
||||
) -> Optional[Union[OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI,]]:
|
||||
# Override to use Azure-specific client initialization
|
||||
if isinstance(client, OpenAI) or isinstance(client, AsyncOpenAI):
|
||||
client = None
|
||||
|
||||
return self.get_azure_openai_client(
|
||||
litellm_params=litellm_params or {},
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
Binary file not shown.
@@ -0,0 +1,75 @@
|
||||
"""
|
||||
This file contains the calling Azure OpenAI's `/openai/realtime` endpoint.
|
||||
|
||||
This requires websockets, and is currently only supported on LiteLLM Proxy.
|
||||
"""
|
||||
|
||||
from typing import Any, Optional
|
||||
|
||||
from ....litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
||||
from ....litellm_core_utils.realtime_streaming import RealTimeStreaming
|
||||
from ..azure import AzureChatCompletion
|
||||
|
||||
# BACKEND_WS_URL = "ws://localhost:8080/v1/realtime?model=gpt-4o-realtime-preview-2024-10-01"
|
||||
|
||||
|
||||
async def forward_messages(client_ws: Any, backend_ws: Any):
|
||||
import websockets
|
||||
|
||||
try:
|
||||
while True:
|
||||
message = await backend_ws.recv()
|
||||
await client_ws.send_text(message)
|
||||
except websockets.exceptions.ConnectionClosed: # type: ignore
|
||||
pass
|
||||
|
||||
|
||||
class AzureOpenAIRealtime(AzureChatCompletion):
|
||||
def _construct_url(self, api_base: str, model: str, api_version: str) -> str:
|
||||
"""
|
||||
Example output:
|
||||
"wss://my-endpoint-sweden-berri992.openai.azure.com/openai/realtime?api-version=2024-10-01-preview&deployment=gpt-4o-realtime-preview";
|
||||
|
||||
"""
|
||||
api_base = api_base.replace("https://", "wss://")
|
||||
return (
|
||||
f"{api_base}/openai/realtime?api-version={api_version}&deployment={model}"
|
||||
)
|
||||
|
||||
async def async_realtime(
|
||||
self,
|
||||
model: str,
|
||||
websocket: Any,
|
||||
api_base: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
azure_ad_token: Optional[str] = None,
|
||||
client: Optional[Any] = None,
|
||||
logging_obj: Optional[LiteLLMLogging] = None,
|
||||
timeout: Optional[float] = None,
|
||||
):
|
||||
import websockets
|
||||
|
||||
if api_base is None:
|
||||
raise ValueError("api_base is required for Azure OpenAI calls")
|
||||
if api_version is None:
|
||||
raise ValueError("api_version is required for Azure OpenAI calls")
|
||||
|
||||
url = self._construct_url(api_base, model, api_version)
|
||||
|
||||
try:
|
||||
async with websockets.connect( # type: ignore
|
||||
url,
|
||||
extra_headers={
|
||||
"api-key": api_key, # type: ignore
|
||||
},
|
||||
) as backend_ws:
|
||||
realtime_streaming = RealTimeStreaming(
|
||||
websocket, backend_ws, logging_obj
|
||||
)
|
||||
await realtime_streaming.bidirectional_forward()
|
||||
|
||||
except websockets.exceptions.InvalidStatusCode as e: # type: ignore
|
||||
await websocket.close(code=e.status_code, reason=str(e))
|
||||
except Exception:
|
||||
pass
|
||||
Binary file not shown.
@@ -0,0 +1,138 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, cast
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.llms.openai.responses.transformation import OpenAIResponsesAPIConfig
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import *
|
||||
from litellm.types.responses.main import *
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
from litellm.utils import _add_path_to_api_base
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class AzureOpenAIResponsesAPIConfig(OpenAIResponsesAPIConfig):
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
api_key: Optional[str] = None,
|
||||
) -> dict:
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.api_key
|
||||
or litellm.azure_key
|
||||
or get_secret_str("AZURE_OPENAI_API_KEY")
|
||||
or get_secret_str("AZURE_API_KEY")
|
||||
)
|
||||
|
||||
headers.update(
|
||||
{
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
}
|
||||
)
|
||||
return headers
|
||||
|
||||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
litellm_params: dict,
|
||||
) -> str:
|
||||
"""
|
||||
Constructs a complete URL for the API request.
|
||||
|
||||
Args:
|
||||
- api_base: Base URL, e.g.,
|
||||
"https://litellm8397336933.openai.azure.com"
|
||||
OR
|
||||
"https://litellm8397336933.openai.azure.com/openai/responses?api-version=2024-05-01-preview"
|
||||
- model: Model name.
|
||||
- optional_params: Additional query parameters, including "api_version".
|
||||
- stream: If streaming is required (optional).
|
||||
|
||||
Returns:
|
||||
- A complete URL string, e.g.,
|
||||
"https://litellm8397336933.openai.azure.com/openai/responses?api-version=2024-05-01-preview"
|
||||
"""
|
||||
api_base = api_base or litellm.api_base or get_secret_str("AZURE_API_BASE")
|
||||
if api_base is None:
|
||||
raise ValueError(
|
||||
f"api_base is required for Azure AI Studio. Please set the api_base parameter. Passed `api_base={api_base}`"
|
||||
)
|
||||
original_url = httpx.URL(api_base)
|
||||
|
||||
# Extract api_version or use default
|
||||
api_version = cast(Optional[str], litellm_params.get("api_version"))
|
||||
|
||||
# Create a new dictionary with existing params
|
||||
query_params = dict(original_url.params)
|
||||
|
||||
# Add api_version if needed
|
||||
if "api-version" not in query_params and api_version:
|
||||
query_params["api-version"] = api_version
|
||||
|
||||
# Add the path to the base URL
|
||||
if "/openai/responses" not in api_base:
|
||||
new_url = _add_path_to_api_base(
|
||||
api_base=api_base, ending_path="/openai/responses"
|
||||
)
|
||||
else:
|
||||
new_url = api_base
|
||||
|
||||
# Use the new query_params dictionary
|
||||
final_url = httpx.URL(new_url).copy_with(params=query_params)
|
||||
|
||||
return str(final_url)
|
||||
|
||||
#########################################################
|
||||
########## DELETE RESPONSE API TRANSFORMATION ##############
|
||||
#########################################################
|
||||
def transform_delete_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
"""
|
||||
Transform the delete response API request into a URL and data
|
||||
|
||||
Azure OpenAI API expects the following request:
|
||||
- DELETE /openai/responses/{response_id}?api-version=xxx
|
||||
|
||||
This function handles URLs with query parameters by inserting the response_id
|
||||
at the correct location (before any query parameters).
|
||||
"""
|
||||
from urllib.parse import urlparse, urlunparse
|
||||
|
||||
# Parse the URL to separate its components
|
||||
parsed_url = urlparse(api_base)
|
||||
|
||||
# Insert the response_id at the end of the path component
|
||||
# Remove trailing slash if present to avoid double slashes
|
||||
path = parsed_url.path.rstrip("/")
|
||||
new_path = f"{path}/{response_id}"
|
||||
|
||||
# Reconstruct the URL with all original components but with the modified path
|
||||
delete_url = urlunparse(
|
||||
(
|
||||
parsed_url.scheme, # http, https
|
||||
parsed_url.netloc, # domain name, port
|
||||
new_path, # path with response_id added
|
||||
parsed_url.params, # parameters
|
||||
parsed_url.query, # query string
|
||||
parsed_url.fragment, # fragment
|
||||
)
|
||||
)
|
||||
|
||||
data: Dict = {}
|
||||
verbose_logger.debug(f"delete response url={delete_url}")
|
||||
return delete_url, data
|
||||
Reference in New Issue
Block a user