structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
Anthropic /complete API - uses `llm_http_handler.py` to make httpx requests
|
||||
|
||||
Request/Response transformation is handled in `transformation.py`
|
||||
"""
|
||||
@@ -0,0 +1,310 @@
|
||||
"""
|
||||
Translation logic for anthropic's `/v1/complete` endpoint
|
||||
|
||||
Litellm provider slug: `anthropic_text/<model_name>`
|
||||
"""
|
||||
|
||||
import json
|
||||
import time
|
||||
from typing import AsyncIterator, Dict, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.constants import DEFAULT_MAX_TOKENS
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
custom_prompt,
|
||||
prompt_factory,
|
||||
)
|
||||
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
|
||||
from litellm.llms.base_llm.chat.transformation import (
|
||||
BaseConfig,
|
||||
BaseLLMException,
|
||||
LiteLLMLoggingObj,
|
||||
)
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionToolCallChunk,
|
||||
ChatCompletionUsageBlock,
|
||||
GenericStreamingChunk,
|
||||
ModelResponse,
|
||||
Usage,
|
||||
)
|
||||
|
||||
|
||||
class AnthropicTextError(BaseLLMException):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
method="POST", url="https://api.anthropic.com/v1/complete"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
message=self.message,
|
||||
status_code=self.status_code,
|
||||
request=self.request,
|
||||
response=self.response,
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class AnthropicTextConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://docs.anthropic.com/claude/reference/complete_post
|
||||
|
||||
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
||||
"""
|
||||
|
||||
max_tokens_to_sample: Optional[
|
||||
int
|
||||
] = litellm.max_tokens # anthropic requires a default
|
||||
stop_sequences: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
top_k: Optional[int] = None
|
||||
metadata: Optional[dict] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens_to_sample: Optional[
|
||||
int
|
||||
] = DEFAULT_MAX_TOKENS, # anthropic requires a default
|
||||
stop_sequences: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
top_k: Optional[int] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
# makes headers for API call
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
if api_key is None:
|
||||
raise ValueError(
|
||||
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
|
||||
)
|
||||
_headers = {
|
||||
"accept": "application/json",
|
||||
"anthropic-version": "2023-06-01",
|
||||
"content-type": "application/json",
|
||||
"x-api-key": api_key,
|
||||
}
|
||||
headers.update(_headers)
|
||||
return headers
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
prompt = self._get_anthropic_text_prompt_from_messages(
|
||||
messages=messages, model=model
|
||||
)
|
||||
## Load Config
|
||||
config = litellm.AnthropicTextConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
return data
|
||||
|
||||
def get_supported_openai_params(self, model: str):
|
||||
"""
|
||||
Anthropic /complete API Ref: https://docs.anthropic.com/en/api/complete
|
||||
"""
|
||||
return [
|
||||
"stream",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"extra_headers",
|
||||
"user",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
"""
|
||||
Follows the same logic as the AnthropicConfig.map_openai_params method (which is the Anthropic /messages API)
|
||||
|
||||
Note: the only difference is in the get supported openai params method between the AnthropicConfig and AnthropicTextConfig
|
||||
API Ref: https://docs.anthropic.com/en/api/complete
|
||||
"""
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens_to_sample"] = value
|
||||
if param == "max_completion_tokens":
|
||||
optional_params["max_tokens_to_sample"] = value
|
||||
if param == "stream" and value is True:
|
||||
optional_params["stream"] = value
|
||||
if param == "stop" and (isinstance(value, str) or isinstance(value, list)):
|
||||
_value = litellm.AnthropicConfig()._map_stop_sequences(value)
|
||||
if _value is not None:
|
||||
optional_params["stop_sequences"] = _value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "user":
|
||||
optional_params["metadata"] = {"user_id": value}
|
||||
|
||||
return optional_params
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: str,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
try:
|
||||
completion_response = raw_response.json()
|
||||
except Exception:
|
||||
raise AnthropicTextError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
prompt = self._get_anthropic_text_prompt_from_messages(
|
||||
messages=messages, model=model
|
||||
)
|
||||
if "error" in completion_response:
|
||||
raise AnthropicTextError(
|
||||
message=str(completion_response["error"]),
|
||||
status_code=raw_response.status_code,
|
||||
)
|
||||
else:
|
||||
if len(completion_response["completion"]) > 0:
|
||||
model_response.choices[0].message.content = completion_response[ # type: ignore
|
||||
"completion"
|
||||
]
|
||||
model_response.choices[0].finish_reason = completion_response["stop_reason"]
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
) ##[TODO] use the anthropic tokenizer here
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
) ##[TODO] use the anthropic tokenizer here
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return AnthropicTextError(
|
||||
status_code=status_code,
|
||||
message=error_message,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _is_anthropic_text_model(model: str) -> bool:
|
||||
return model == "claude-2" or model == "claude-instant-1"
|
||||
|
||||
def _get_anthropic_text_prompt_from_messages(
|
||||
self, messages: List[AllMessageValues], model: str
|
||||
) -> str:
|
||||
custom_prompt_dict = litellm.custom_prompt_dict
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(
|
||||
model=model, messages=messages, custom_llm_provider="anthropic"
|
||||
)
|
||||
|
||||
return str(prompt)
|
||||
|
||||
def get_model_response_iterator(
|
||||
self,
|
||||
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
sync_stream: bool,
|
||||
json_mode: Optional[bool] = False,
|
||||
):
|
||||
return AnthropicTextCompletionResponseIterator(
|
||||
streaming_response=streaming_response,
|
||||
sync_stream=sync_stream,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
|
||||
class AnthropicTextCompletionResponseIterator(BaseModelResponseIterator):
|
||||
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
||||
try:
|
||||
text = ""
|
||||
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
usage: Optional[ChatCompletionUsageBlock] = None
|
||||
provider_specific_fields = None
|
||||
index = int(chunk.get("index", 0))
|
||||
_chunk_text = chunk.get("completion", None)
|
||||
if _chunk_text is not None and isinstance(_chunk_text, str):
|
||||
text = _chunk_text
|
||||
finish_reason = chunk.get("stop_reason", None)
|
||||
if finish_reason is not None:
|
||||
is_finished = True
|
||||
returned_chunk = GenericStreamingChunk(
|
||||
text=text,
|
||||
tool_use=tool_use,
|
||||
is_finished=is_finished,
|
||||
finish_reason=finish_reason,
|
||||
usage=usage,
|
||||
index=index,
|
||||
provider_specific_fields=provider_specific_fields,
|
||||
)
|
||||
|
||||
return returned_chunk
|
||||
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|
||||
Reference in New Issue
Block a user