structure saas with tools
This commit is contained in:
@@ -0,0 +1,317 @@
|
||||
#### What this does ####
|
||||
# This file contains the LiteralAILogger class which is used to log steps to the LiteralAI observability platform.
|
||||
import asyncio
|
||||
import os
|
||||
import uuid
|
||||
from typing import List, Optional
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.custom_batch_logger import CustomBatchLogger
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
HTTPHandler,
|
||||
get_async_httpx_client,
|
||||
httpxSpecialProvider,
|
||||
)
|
||||
from litellm.types.utils import StandardLoggingPayload
|
||||
|
||||
|
||||
class LiteralAILogger(CustomBatchLogger):
|
||||
def __init__(
|
||||
self,
|
||||
literalai_api_key=None,
|
||||
literalai_api_url="https://cloud.getliteral.ai",
|
||||
env=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.literalai_api_url = os.getenv("LITERAL_API_URL") or literalai_api_url
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
"x-api-key": literalai_api_key or os.getenv("LITERAL_API_KEY"),
|
||||
"x-client-name": "litellm",
|
||||
}
|
||||
if env:
|
||||
self.headers["x-env"] = env
|
||||
self.async_httpx_client = get_async_httpx_client(
|
||||
llm_provider=httpxSpecialProvider.LoggingCallback
|
||||
)
|
||||
self.sync_http_handler = HTTPHandler()
|
||||
batch_size = os.getenv("LITERAL_BATCH_SIZE", None)
|
||||
self.flush_lock = asyncio.Lock()
|
||||
super().__init__(
|
||||
**kwargs,
|
||||
flush_lock=self.flush_lock,
|
||||
batch_size=int(batch_size) if batch_size else None,
|
||||
)
|
||||
|
||||
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
verbose_logger.debug(
|
||||
"Literal AI Layer Logging - kwargs: %s, response_obj: %s",
|
||||
kwargs,
|
||||
response_obj,
|
||||
)
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
verbose_logger.debug(
|
||||
"Literal AI logging: queue length %s, batch size %s",
|
||||
len(self.log_queue),
|
||||
self.batch_size,
|
||||
)
|
||||
if len(self.log_queue) >= self.batch_size:
|
||||
self._send_batch()
|
||||
except Exception:
|
||||
verbose_logger.exception(
|
||||
"Literal AI Layer Error - error logging success event."
|
||||
)
|
||||
|
||||
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
verbose_logger.info("Literal AI Failure Event Logging!")
|
||||
try:
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
verbose_logger.debug(
|
||||
"Literal AI logging: queue length %s, batch size %s",
|
||||
len(self.log_queue),
|
||||
self.batch_size,
|
||||
)
|
||||
if len(self.log_queue) >= self.batch_size:
|
||||
self._send_batch()
|
||||
except Exception:
|
||||
verbose_logger.exception(
|
||||
"Literal AI Layer Error - error logging failure event."
|
||||
)
|
||||
|
||||
def _send_batch(self):
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
url = f"{self.literalai_api_url}/api/graphql"
|
||||
query = self._steps_query_builder(self.log_queue)
|
||||
variables = self._steps_variables_builder(self.log_queue)
|
||||
try:
|
||||
response = self.sync_http_handler.post(
|
||||
url=url,
|
||||
json={
|
||||
"query": query,
|
||||
"variables": variables,
|
||||
},
|
||||
headers=self.headers,
|
||||
)
|
||||
|
||||
if response.status_code >= 300:
|
||||
verbose_logger.error(
|
||||
f"Literal AI Error: {response.status_code} - {response.text}"
|
||||
)
|
||||
else:
|
||||
verbose_logger.debug(
|
||||
f"Batch of {len(self.log_queue)} runs successfully created"
|
||||
)
|
||||
except Exception:
|
||||
verbose_logger.exception("Literal AI Layer Error")
|
||||
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
verbose_logger.debug(
|
||||
"Literal AI Async Layer Logging - kwargs: %s, response_obj: %s",
|
||||
kwargs,
|
||||
response_obj,
|
||||
)
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
verbose_logger.debug(
|
||||
"Literal AI logging: queue length %s, batch size %s",
|
||||
len(self.log_queue),
|
||||
self.batch_size,
|
||||
)
|
||||
if len(self.log_queue) >= self.batch_size:
|
||||
await self.flush_queue()
|
||||
except Exception:
|
||||
verbose_logger.exception(
|
||||
"Literal AI Layer Error - error logging async success event."
|
||||
)
|
||||
|
||||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
verbose_logger.info("Literal AI Failure Event Logging!")
|
||||
try:
|
||||
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
|
||||
self.log_queue.append(data)
|
||||
verbose_logger.debug(
|
||||
"Literal AI logging: queue length %s, batch size %s",
|
||||
len(self.log_queue),
|
||||
self.batch_size,
|
||||
)
|
||||
if len(self.log_queue) >= self.batch_size:
|
||||
await self.flush_queue()
|
||||
except Exception:
|
||||
verbose_logger.exception(
|
||||
"Literal AI Layer Error - error logging async failure event."
|
||||
)
|
||||
|
||||
async def async_send_batch(self):
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
url = f"{self.literalai_api_url}/api/graphql"
|
||||
query = self._steps_query_builder(self.log_queue)
|
||||
variables = self._steps_variables_builder(self.log_queue)
|
||||
|
||||
try:
|
||||
response = await self.async_httpx_client.post(
|
||||
url=url,
|
||||
json={
|
||||
"query": query,
|
||||
"variables": variables,
|
||||
},
|
||||
headers=self.headers,
|
||||
)
|
||||
if response.status_code >= 300:
|
||||
verbose_logger.error(
|
||||
f"Literal AI Error: {response.status_code} - {response.text}"
|
||||
)
|
||||
else:
|
||||
verbose_logger.debug(
|
||||
f"Batch of {len(self.log_queue)} runs successfully created"
|
||||
)
|
||||
except httpx.HTTPStatusError as e:
|
||||
verbose_logger.exception(
|
||||
f"Literal AI HTTP Error: {e.response.status_code} - {e.response.text}"
|
||||
)
|
||||
except Exception:
|
||||
verbose_logger.exception("Literal AI Layer Error")
|
||||
|
||||
def _prepare_log_data(self, kwargs, response_obj, start_time, end_time) -> dict:
|
||||
logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object", None
|
||||
)
|
||||
|
||||
if logging_payload is None:
|
||||
raise ValueError("standard_logging_object not found in kwargs")
|
||||
clean_metadata = logging_payload["metadata"]
|
||||
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
|
||||
|
||||
settings = logging_payload["model_parameters"]
|
||||
messages = logging_payload["messages"]
|
||||
response = logging_payload["response"]
|
||||
choices: List = []
|
||||
if isinstance(response, dict) and "choices" in response:
|
||||
choices = response["choices"]
|
||||
message_completion = choices[0]["message"] if choices else None
|
||||
prompt_id = None
|
||||
variables = None
|
||||
|
||||
if messages and isinstance(messages, list) and isinstance(messages[0], dict):
|
||||
for message in messages:
|
||||
if literal_prompt := getattr(message, "__literal_prompt__", None):
|
||||
prompt_id = literal_prompt.get("prompt_id")
|
||||
variables = literal_prompt.get("variables")
|
||||
message["uuid"] = literal_prompt.get("uuid")
|
||||
message["templated"] = True
|
||||
|
||||
tools = settings.pop("tools", None)
|
||||
|
||||
step = {
|
||||
"id": metadata.get("step_id", str(uuid.uuid4())),
|
||||
"error": logging_payload["error_str"],
|
||||
"name": kwargs.get("model", ""),
|
||||
"threadId": metadata.get("literalai_thread_id", None),
|
||||
"parentId": metadata.get("literalai_parent_id", None),
|
||||
"rootRunId": metadata.get("literalai_root_run_id", None),
|
||||
"input": None,
|
||||
"output": None,
|
||||
"type": "llm",
|
||||
"tags": metadata.get("tags", metadata.get("literalai_tags", None)),
|
||||
"startTime": str(start_time),
|
||||
"endTime": str(end_time),
|
||||
"metadata": clean_metadata,
|
||||
"generation": {
|
||||
"inputTokenCount": logging_payload["prompt_tokens"],
|
||||
"outputTokenCount": logging_payload["completion_tokens"],
|
||||
"tokenCount": logging_payload["total_tokens"],
|
||||
"promptId": prompt_id,
|
||||
"variables": variables,
|
||||
"provider": kwargs.get("custom_llm_provider", "litellm"),
|
||||
"model": kwargs.get("model", ""),
|
||||
"duration": (end_time - start_time).total_seconds(),
|
||||
"settings": settings,
|
||||
"messages": messages,
|
||||
"messageCompletion": message_completion,
|
||||
"tools": tools,
|
||||
},
|
||||
}
|
||||
return step
|
||||
|
||||
def _steps_query_variables_builder(self, steps):
|
||||
generated = ""
|
||||
for id in range(len(steps)):
|
||||
generated += f"""$id_{id}: String!
|
||||
$threadId_{id}: String
|
||||
$rootRunId_{id}: String
|
||||
$type_{id}: StepType
|
||||
$startTime_{id}: DateTime
|
||||
$endTime_{id}: DateTime
|
||||
$error_{id}: String
|
||||
$input_{id}: Json
|
||||
$output_{id}: Json
|
||||
$metadata_{id}: Json
|
||||
$parentId_{id}: String
|
||||
$name_{id}: String
|
||||
$tags_{id}: [String!]
|
||||
$generation_{id}: GenerationPayloadInput
|
||||
$scores_{id}: [ScorePayloadInput!]
|
||||
$attachments_{id}: [AttachmentPayloadInput!]
|
||||
"""
|
||||
return generated
|
||||
|
||||
def _steps_ingest_steps_builder(self, steps):
|
||||
generated = ""
|
||||
for id in range(len(steps)):
|
||||
generated += f"""
|
||||
step{id}: ingestStep(
|
||||
id: $id_{id}
|
||||
threadId: $threadId_{id}
|
||||
rootRunId: $rootRunId_{id}
|
||||
startTime: $startTime_{id}
|
||||
endTime: $endTime_{id}
|
||||
type: $type_{id}
|
||||
error: $error_{id}
|
||||
input: $input_{id}
|
||||
output: $output_{id}
|
||||
metadata: $metadata_{id}
|
||||
parentId: $parentId_{id}
|
||||
name: $name_{id}
|
||||
tags: $tags_{id}
|
||||
generation: $generation_{id}
|
||||
scores: $scores_{id}
|
||||
attachments: $attachments_{id}
|
||||
) {{
|
||||
ok
|
||||
message
|
||||
}}
|
||||
"""
|
||||
return generated
|
||||
|
||||
def _steps_query_builder(self, steps):
|
||||
return f"""
|
||||
mutation AddStep({self._steps_query_variables_builder(steps)}) {{
|
||||
{self._steps_ingest_steps_builder(steps)}
|
||||
}}
|
||||
"""
|
||||
|
||||
def _steps_variables_builder(self, steps):
|
||||
def serialize_step(event, id):
|
||||
result = {}
|
||||
|
||||
for key, value in event.items():
|
||||
# Only keep the keys that are not None to avoid overriding existing values
|
||||
if value is not None:
|
||||
result[f"{key}_{id}"] = value
|
||||
|
||||
return result
|
||||
|
||||
variables = {}
|
||||
for i in range(len(steps)):
|
||||
step = steps[i]
|
||||
variables.update(serialize_step(step, i))
|
||||
return variables
|
||||
Reference in New Issue
Block a user