structure saas with tools
This commit is contained in:
@@ -0,0 +1,188 @@
|
||||
#### What this does ####
|
||||
# On success, logs events to Helicone
|
||||
import os
|
||||
import traceback
|
||||
|
||||
import litellm
|
||||
|
||||
|
||||
class HeliconeLogger:
|
||||
# Class variables or attributes
|
||||
helicone_model_list = [
|
||||
"gpt",
|
||||
"claude",
|
||||
"command-r",
|
||||
"command-r-plus",
|
||||
"command-light",
|
||||
"command-medium",
|
||||
"command-medium-beta",
|
||||
"command-xlarge-nightly",
|
||||
"command-nightly",
|
||||
]
|
||||
|
||||
def __init__(self):
|
||||
# Instance variables
|
||||
self.provider_url = "https://api.openai.com/v1"
|
||||
self.key = os.getenv("HELICONE_API_KEY")
|
||||
|
||||
def claude_mapping(self, model, messages, response_obj):
|
||||
from anthropic import AI_PROMPT, HUMAN_PROMPT
|
||||
|
||||
prompt = f"{HUMAN_PROMPT}"
|
||||
for message in messages:
|
||||
if "role" in message:
|
||||
if message["role"] == "user":
|
||||
prompt += f"{HUMAN_PROMPT}{message['content']}"
|
||||
else:
|
||||
prompt += f"{AI_PROMPT}{message['content']}"
|
||||
else:
|
||||
prompt += f"{HUMAN_PROMPT}{message['content']}"
|
||||
prompt += f"{AI_PROMPT}"
|
||||
|
||||
choice = response_obj["choices"][0]
|
||||
message = choice["message"]
|
||||
|
||||
content = []
|
||||
if "tool_calls" in message and message["tool_calls"]:
|
||||
for tool_call in message["tool_calls"]:
|
||||
content.append(
|
||||
{
|
||||
"type": "tool_use",
|
||||
"id": tool_call["id"],
|
||||
"name": tool_call["function"]["name"],
|
||||
"input": tool_call["function"]["arguments"],
|
||||
}
|
||||
)
|
||||
elif "content" in message and message["content"]:
|
||||
content = [{"type": "text", "text": message["content"]}]
|
||||
|
||||
claude_response_obj = {
|
||||
"id": response_obj["id"],
|
||||
"type": "message",
|
||||
"role": "assistant",
|
||||
"model": model,
|
||||
"content": content,
|
||||
"stop_reason": choice["finish_reason"],
|
||||
"stop_sequence": None,
|
||||
"usage": {
|
||||
"input_tokens": response_obj["usage"]["prompt_tokens"],
|
||||
"output_tokens": response_obj["usage"]["completion_tokens"],
|
||||
},
|
||||
}
|
||||
|
||||
return claude_response_obj
|
||||
|
||||
@staticmethod
|
||||
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
|
||||
"""
|
||||
Adds metadata from proxy request headers to Helicone logging if keys start with "helicone_"
|
||||
and overwrites litellm_params.metadata if already included.
|
||||
|
||||
For example if you want to add custom property to your request, send
|
||||
`headers: { ..., helicone-property-something: 1234 }` via proxy request.
|
||||
"""
|
||||
if litellm_params is None:
|
||||
return metadata
|
||||
|
||||
if litellm_params.get("proxy_server_request") is None:
|
||||
return metadata
|
||||
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
|
||||
proxy_headers = (
|
||||
litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
|
||||
)
|
||||
|
||||
for header_key in proxy_headers:
|
||||
if header_key.startswith("helicone_"):
|
||||
metadata[header_key] = proxy_headers.get(header_key)
|
||||
|
||||
return metadata
|
||||
|
||||
def log_success(
|
||||
self, model, messages, response_obj, start_time, end_time, print_verbose, kwargs
|
||||
):
|
||||
# Method definition
|
||||
try:
|
||||
print_verbose(
|
||||
f"Helicone Logging - Enters logging function for model {model}"
|
||||
)
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
kwargs.get("litellm_call_id", None)
|
||||
metadata = litellm_params.get("metadata", {}) or {}
|
||||
metadata = self.add_metadata_from_header(litellm_params, metadata)
|
||||
model = (
|
||||
model
|
||||
if any(
|
||||
accepted_model in model
|
||||
for accepted_model in self.helicone_model_list
|
||||
)
|
||||
else "gpt-3.5-turbo"
|
||||
)
|
||||
provider_request = {"model": model, "messages": messages}
|
||||
if isinstance(response_obj, litellm.EmbeddingResponse) or isinstance(
|
||||
response_obj, litellm.ModelResponse
|
||||
):
|
||||
response_obj = response_obj.json()
|
||||
|
||||
if "claude" in model:
|
||||
response_obj = self.claude_mapping(
|
||||
model=model, messages=messages, response_obj=response_obj
|
||||
)
|
||||
|
||||
providerResponse = {
|
||||
"json": response_obj,
|
||||
"headers": {"openai-version": "2020-10-01"},
|
||||
"status": 200,
|
||||
}
|
||||
|
||||
# Code to be executed
|
||||
provider_url = self.provider_url
|
||||
url = "https://api.hconeai.com/oai/v1/log"
|
||||
if "claude" in model:
|
||||
url = "https://api.hconeai.com/anthropic/v1/log"
|
||||
provider_url = "https://api.anthropic.com/v1/messages"
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
start_time_seconds = int(start_time.timestamp())
|
||||
start_time_milliseconds = int(
|
||||
(start_time.timestamp() - start_time_seconds) * 1000
|
||||
)
|
||||
end_time_seconds = int(end_time.timestamp())
|
||||
end_time_milliseconds = int(
|
||||
(end_time.timestamp() - end_time_seconds) * 1000
|
||||
)
|
||||
meta = {"Helicone-Auth": f"Bearer {self.key}"}
|
||||
meta.update(metadata)
|
||||
data = {
|
||||
"providerRequest": {
|
||||
"url": provider_url,
|
||||
"json": provider_request,
|
||||
"meta": meta,
|
||||
},
|
||||
"providerResponse": providerResponse,
|
||||
"timing": {
|
||||
"startTime": {
|
||||
"seconds": start_time_seconds,
|
||||
"milliseconds": start_time_milliseconds,
|
||||
},
|
||||
"endTime": {
|
||||
"seconds": end_time_seconds,
|
||||
"milliseconds": end_time_milliseconds,
|
||||
},
|
||||
}, # {"seconds": .., "milliseconds": ..}
|
||||
}
|
||||
response = litellm.module_level_client.post(url, headers=headers, json=data)
|
||||
if response.status_code == 200:
|
||||
print_verbose("Helicone Logging - Success!")
|
||||
else:
|
||||
print_verbose(
|
||||
f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}"
|
||||
)
|
||||
print_verbose(f"Helicone Logging - Error {response.text}")
|
||||
except Exception:
|
||||
print_verbose(f"Helicone Logging Error - {traceback.format_exc()}")
|
||||
pass
|
||||
Reference in New Issue
Block a user