structure saas with tools
This commit is contained in:
@@ -0,0 +1,12 @@
|
||||
# GCS (Google Cloud Storage) Bucket Logging on LiteLLM Gateway
|
||||
|
||||
This folder contains the GCS Bucket Logging integration for LiteLLM Gateway.
|
||||
|
||||
## Folder Structure
|
||||
|
||||
- `gcs_bucket.py`: This is the main file that handles failure/success logging to GCS Bucket
|
||||
- `gcs_bucket_base.py`: This file contains the GCSBucketBase class which handles Authentication for GCS Buckets
|
||||
|
||||
## Further Reading
|
||||
- [Doc setting up GCS Bucket Logging on LiteLLM Proxy (Gateway)](https://docs.litellm.ai/docs/proxy/bucket)
|
||||
- [Doc on Key / Team Based logging with GCS](https://docs.litellm.ai/docs/proxy/team_logging)
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,234 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
from urllib.parse import quote
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.additional_logging_utils import AdditionalLoggingUtils
|
||||
from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase
|
||||
from litellm.proxy._types import CommonProxyErrors
|
||||
from litellm.types.integrations.base_health_check import IntegrationHealthCheckStatus
|
||||
from litellm.types.integrations.gcs_bucket import *
|
||||
from litellm.types.utils import StandardLoggingPayload
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
|
||||
else:
|
||||
VertexBase = Any
|
||||
|
||||
|
||||
class GCSBucketLogger(GCSBucketBase, AdditionalLoggingUtils):
|
||||
def __init__(self, bucket_name: Optional[str] = None) -> None:
|
||||
from litellm.proxy.proxy_server import premium_user
|
||||
|
||||
super().__init__(bucket_name=bucket_name)
|
||||
|
||||
# Init Batch logging settings
|
||||
self.log_queue: List[GCSLogQueueItem] = []
|
||||
self.batch_size = int(os.getenv("GCS_BATCH_SIZE", GCS_DEFAULT_BATCH_SIZE))
|
||||
self.flush_interval = int(
|
||||
os.getenv("GCS_FLUSH_INTERVAL", GCS_DEFAULT_FLUSH_INTERVAL_SECONDS)
|
||||
)
|
||||
asyncio.create_task(self.periodic_flush())
|
||||
self.flush_lock = asyncio.Lock()
|
||||
super().__init__(
|
||||
flush_lock=self.flush_lock,
|
||||
batch_size=self.batch_size,
|
||||
flush_interval=self.flush_interval,
|
||||
)
|
||||
AdditionalLoggingUtils.__init__(self)
|
||||
|
||||
if premium_user is not True:
|
||||
raise ValueError(
|
||||
f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
|
||||
)
|
||||
|
||||
#### ASYNC ####
|
||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||
from litellm.proxy.proxy_server import premium_user
|
||||
|
||||
if premium_user is not True:
|
||||
raise ValueError(
|
||||
f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}"
|
||||
)
|
||||
try:
|
||||
verbose_logger.debug(
|
||||
"GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s",
|
||||
kwargs,
|
||||
response_obj,
|
||||
)
|
||||
logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object", None
|
||||
)
|
||||
if logging_payload is None:
|
||||
raise ValueError("standard_logging_object not found in kwargs")
|
||||
# Add to logging queue - this will be flushed periodically
|
||||
self.log_queue.append(
|
||||
GCSLogQueueItem(
|
||||
payload=logging_payload, kwargs=kwargs, response_obj=response_obj
|
||||
)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")
|
||||
|
||||
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
||||
try:
|
||||
verbose_logger.debug(
|
||||
"GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s",
|
||||
kwargs,
|
||||
response_obj,
|
||||
)
|
||||
|
||||
logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object", None
|
||||
)
|
||||
if logging_payload is None:
|
||||
raise ValueError("standard_logging_object not found in kwargs")
|
||||
# Add to logging queue - this will be flushed periodically
|
||||
self.log_queue.append(
|
||||
GCSLogQueueItem(
|
||||
payload=logging_payload, kwargs=kwargs, response_obj=response_obj
|
||||
)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.exception(f"GCS Bucket logging error: {str(e)}")
|
||||
|
||||
async def async_send_batch(self):
|
||||
"""
|
||||
Process queued logs in batch - sends logs to GCS Bucket
|
||||
|
||||
|
||||
GCS Bucket does not have a Batch endpoint to batch upload logs
|
||||
|
||||
Instead, we
|
||||
- collect the logs to flush every `GCS_FLUSH_INTERVAL` seconds
|
||||
- during async_send_batch, we make 1 POST request per log to GCS Bucket
|
||||
|
||||
"""
|
||||
if not self.log_queue:
|
||||
return
|
||||
|
||||
for log_item in self.log_queue:
|
||||
logging_payload = log_item["payload"]
|
||||
kwargs = log_item["kwargs"]
|
||||
response_obj = log_item.get("response_obj", None) or {}
|
||||
|
||||
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
|
||||
kwargs
|
||||
)
|
||||
|
||||
headers = await self.construct_request_headers(
|
||||
vertex_instance=gcs_logging_config["vertex_instance"],
|
||||
service_account_json=gcs_logging_config["path_service_account"],
|
||||
)
|
||||
bucket_name = gcs_logging_config["bucket_name"]
|
||||
object_name = self._get_object_name(kwargs, logging_payload, response_obj)
|
||||
|
||||
try:
|
||||
await self._log_json_data_on_gcs(
|
||||
headers=headers,
|
||||
bucket_name=bucket_name,
|
||||
object_name=object_name,
|
||||
logging_payload=logging_payload,
|
||||
)
|
||||
except Exception as e:
|
||||
# don't let one log item fail the entire batch
|
||||
verbose_logger.exception(
|
||||
f"GCS Bucket error logging payload to GCS bucket: {str(e)}"
|
||||
)
|
||||
pass
|
||||
|
||||
# Clear the queue after processing
|
||||
self.log_queue.clear()
|
||||
|
||||
def _get_object_name(
|
||||
self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any
|
||||
) -> str:
|
||||
"""
|
||||
Get the object name to use for the current payload
|
||||
"""
|
||||
current_date = self._get_object_date_from_datetime(datetime.now(timezone.utc))
|
||||
if logging_payload.get("error_str", None) is not None:
|
||||
object_name = self._generate_failure_object_name(
|
||||
request_date_str=current_date,
|
||||
)
|
||||
else:
|
||||
object_name = self._generate_success_object_name(
|
||||
request_date_str=current_date,
|
||||
response_id=response_obj.get("id", ""),
|
||||
)
|
||||
|
||||
# used for testing
|
||||
_litellm_params = kwargs.get("litellm_params", None) or {}
|
||||
_metadata = _litellm_params.get("metadata", None) or {}
|
||||
if "gcs_log_id" in _metadata:
|
||||
object_name = _metadata["gcs_log_id"]
|
||||
|
||||
return object_name
|
||||
|
||||
async def get_request_response_payload(
|
||||
self,
|
||||
request_id: str,
|
||||
start_time_utc: Optional[datetime],
|
||||
end_time_utc: Optional[datetime],
|
||||
) -> Optional[dict]:
|
||||
"""
|
||||
Get the request and response payload for a given `request_id`
|
||||
Tries current day, next day, and previous day until it finds the payload
|
||||
"""
|
||||
if start_time_utc is None:
|
||||
raise ValueError(
|
||||
"start_time_utc is required for getting a payload from GCS Bucket"
|
||||
)
|
||||
|
||||
# Try current day, next day, and previous day
|
||||
dates_to_try = [
|
||||
start_time_utc,
|
||||
start_time_utc + timedelta(days=1),
|
||||
start_time_utc - timedelta(days=1),
|
||||
]
|
||||
date_str = None
|
||||
for date in dates_to_try:
|
||||
try:
|
||||
date_str = self._get_object_date_from_datetime(datetime_obj=date)
|
||||
object_name = self._generate_success_object_name(
|
||||
request_date_str=date_str,
|
||||
response_id=request_id,
|
||||
)
|
||||
encoded_object_name = quote(object_name, safe="")
|
||||
response = await self.download_gcs_object(encoded_object_name)
|
||||
|
||||
if response is not None:
|
||||
loaded_response = json.loads(response)
|
||||
return loaded_response
|
||||
except Exception as e:
|
||||
verbose_logger.debug(
|
||||
f"Failed to fetch payload for date {date_str}: {str(e)}"
|
||||
)
|
||||
continue
|
||||
|
||||
return None
|
||||
|
||||
def _generate_success_object_name(
|
||||
self,
|
||||
request_date_str: str,
|
||||
response_id: str,
|
||||
) -> str:
|
||||
return f"{request_date_str}/{response_id}"
|
||||
|
||||
def _generate_failure_object_name(
|
||||
self,
|
||||
request_date_str: str,
|
||||
) -> str:
|
||||
return f"{request_date_str}/failure-{uuid.uuid4().hex}"
|
||||
|
||||
def _get_object_date_from_datetime(self, datetime_obj: datetime) -> str:
|
||||
return datetime_obj.strftime("%Y-%m-%d")
|
||||
|
||||
async def async_health_check(self) -> IntegrationHealthCheckStatus:
|
||||
raise NotImplementedError("GCS Bucket does not support health check")
|
||||
@@ -0,0 +1,326 @@
|
||||
import json
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.custom_batch_logger import CustomBatchLogger
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
get_async_httpx_client,
|
||||
httpxSpecialProvider,
|
||||
)
|
||||
from litellm.types.integrations.gcs_bucket import *
|
||||
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
|
||||
else:
|
||||
VertexBase = Any
|
||||
IAM_AUTH_KEY = "IAM_AUTH"
|
||||
|
||||
|
||||
class GCSBucketBase(CustomBatchLogger):
|
||||
def __init__(self, bucket_name: Optional[str] = None, **kwargs) -> None:
|
||||
self.async_httpx_client = get_async_httpx_client(
|
||||
llm_provider=httpxSpecialProvider.LoggingCallback
|
||||
)
|
||||
_path_service_account = os.getenv("GCS_PATH_SERVICE_ACCOUNT")
|
||||
_bucket_name = bucket_name or os.getenv("GCS_BUCKET_NAME")
|
||||
self.path_service_account_json: Optional[str] = _path_service_account
|
||||
self.BUCKET_NAME: Optional[str] = _bucket_name
|
||||
self.vertex_instances: Dict[str, VertexBase] = {}
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def construct_request_headers(
|
||||
self,
|
||||
service_account_json: Optional[str],
|
||||
vertex_instance: Optional[VertexBase] = None,
|
||||
) -> Dict[str, str]:
|
||||
from litellm import vertex_chat_completion
|
||||
|
||||
if vertex_instance is None:
|
||||
vertex_instance = vertex_chat_completion
|
||||
|
||||
_auth_header, vertex_project = await vertex_instance._ensure_access_token_async(
|
||||
credentials=service_account_json,
|
||||
project_id=None,
|
||||
custom_llm_provider="vertex_ai",
|
||||
)
|
||||
|
||||
auth_header, _ = vertex_instance._get_token_and_url(
|
||||
model="gcs-bucket",
|
||||
auth_header=_auth_header,
|
||||
vertex_credentials=service_account_json,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=None,
|
||||
gemini_api_key=None,
|
||||
stream=None,
|
||||
custom_llm_provider="vertex_ai",
|
||||
api_base=None,
|
||||
)
|
||||
verbose_logger.debug("constructed auth_header %s", auth_header)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {auth_header}", # auth_header
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
return headers
|
||||
|
||||
def sync_construct_request_headers(self) -> Dict[str, str]:
|
||||
from litellm import vertex_chat_completion
|
||||
|
||||
_auth_header, vertex_project = vertex_chat_completion._ensure_access_token(
|
||||
credentials=self.path_service_account_json,
|
||||
project_id=None,
|
||||
custom_llm_provider="vertex_ai",
|
||||
)
|
||||
|
||||
auth_header, _ = vertex_chat_completion._get_token_and_url(
|
||||
model="gcs-bucket",
|
||||
auth_header=_auth_header,
|
||||
vertex_credentials=self.path_service_account_json,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=None,
|
||||
gemini_api_key=None,
|
||||
stream=None,
|
||||
custom_llm_provider="vertex_ai",
|
||||
api_base=None,
|
||||
)
|
||||
verbose_logger.debug("constructed auth_header %s", auth_header)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {auth_header}", # auth_header
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
return headers
|
||||
|
||||
def _handle_folders_in_bucket_name(
|
||||
self,
|
||||
bucket_name: str,
|
||||
object_name: str,
|
||||
) -> Tuple[str, str]:
|
||||
"""
|
||||
Handles when the user passes a bucket name with a folder postfix
|
||||
|
||||
|
||||
Example:
|
||||
- Bucket name: "my-bucket/my-folder/dev"
|
||||
- Object name: "my-object"
|
||||
- Returns: bucket_name="my-bucket", object_name="my-folder/dev/my-object"
|
||||
|
||||
"""
|
||||
if "/" in bucket_name:
|
||||
bucket_name, prefix = bucket_name.split("/", 1)
|
||||
object_name = f"{prefix}/{object_name}"
|
||||
return bucket_name, object_name
|
||||
return bucket_name, object_name
|
||||
|
||||
async def get_gcs_logging_config(
|
||||
self, kwargs: Optional[Dict[str, Any]] = {}
|
||||
) -> GCSLoggingConfig:
|
||||
"""
|
||||
This function is used to get the GCS logging config for the GCS Bucket Logger.
|
||||
It checks if the dynamic parameters are provided in the kwargs and uses them to get the GCS logging config.
|
||||
If no dynamic parameters are provided, it uses the default values.
|
||||
"""
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
||||
standard_callback_dynamic_params: Optional[
|
||||
StandardCallbackDynamicParams
|
||||
] = kwargs.get("standard_callback_dynamic_params", None)
|
||||
|
||||
bucket_name: str
|
||||
path_service_account: Optional[str]
|
||||
if standard_callback_dynamic_params is not None:
|
||||
verbose_logger.debug("Using dynamic GCS logging")
|
||||
verbose_logger.debug(
|
||||
"standard_callback_dynamic_params: %s", standard_callback_dynamic_params
|
||||
)
|
||||
|
||||
_bucket_name: Optional[str] = (
|
||||
standard_callback_dynamic_params.get("gcs_bucket_name", None)
|
||||
or self.BUCKET_NAME
|
||||
)
|
||||
_path_service_account: Optional[str] = (
|
||||
standard_callback_dynamic_params.get("gcs_path_service_account", None)
|
||||
or self.path_service_account_json
|
||||
)
|
||||
|
||||
if _bucket_name is None:
|
||||
raise ValueError(
|
||||
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment."
|
||||
)
|
||||
bucket_name = _bucket_name
|
||||
path_service_account = _path_service_account
|
||||
vertex_instance = await self.get_or_create_vertex_instance(
|
||||
credentials=path_service_account
|
||||
)
|
||||
else:
|
||||
# If no dynamic parameters, use the default instance
|
||||
if self.BUCKET_NAME is None:
|
||||
raise ValueError(
|
||||
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment."
|
||||
)
|
||||
bucket_name = self.BUCKET_NAME
|
||||
path_service_account = self.path_service_account_json
|
||||
vertex_instance = await self.get_or_create_vertex_instance(
|
||||
credentials=path_service_account
|
||||
)
|
||||
|
||||
return GCSLoggingConfig(
|
||||
bucket_name=bucket_name,
|
||||
vertex_instance=vertex_instance,
|
||||
path_service_account=path_service_account,
|
||||
)
|
||||
|
||||
async def get_or_create_vertex_instance(
|
||||
self, credentials: Optional[str]
|
||||
) -> VertexBase:
|
||||
"""
|
||||
This function is used to get the Vertex instance for the GCS Bucket Logger.
|
||||
It checks if the Vertex instance is already created and cached, if not it creates a new instance and caches it.
|
||||
"""
|
||||
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
|
||||
|
||||
_in_memory_key = self._get_in_memory_key_for_vertex_instance(credentials)
|
||||
if _in_memory_key not in self.vertex_instances:
|
||||
vertex_instance = VertexBase()
|
||||
await vertex_instance._ensure_access_token_async(
|
||||
credentials=credentials,
|
||||
project_id=None,
|
||||
custom_llm_provider="vertex_ai",
|
||||
)
|
||||
self.vertex_instances[_in_memory_key] = vertex_instance
|
||||
return self.vertex_instances[_in_memory_key]
|
||||
|
||||
def _get_in_memory_key_for_vertex_instance(self, credentials: Optional[str]) -> str:
|
||||
"""
|
||||
Returns key to use for caching the Vertex instance in-memory.
|
||||
|
||||
When using Vertex with Key based logging, we need to cache the Vertex instance in-memory.
|
||||
|
||||
- If a credentials string is provided, it is used as the key.
|
||||
- If no credentials string is provided, "IAM_AUTH" is used as the key.
|
||||
"""
|
||||
return credentials or IAM_AUTH_KEY
|
||||
|
||||
async def download_gcs_object(self, object_name: str, **kwargs):
|
||||
"""
|
||||
Download an object from GCS.
|
||||
|
||||
https://cloud.google.com/storage/docs/downloading-objects#download-object-json
|
||||
"""
|
||||
try:
|
||||
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
|
||||
kwargs=kwargs
|
||||
)
|
||||
headers = await self.construct_request_headers(
|
||||
vertex_instance=gcs_logging_config["vertex_instance"],
|
||||
service_account_json=gcs_logging_config["path_service_account"],
|
||||
)
|
||||
bucket_name = gcs_logging_config["bucket_name"]
|
||||
bucket_name, object_name = self._handle_folders_in_bucket_name(
|
||||
bucket_name=bucket_name,
|
||||
object_name=object_name,
|
||||
)
|
||||
|
||||
url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}?alt=media"
|
||||
|
||||
# Send the GET request to download the object
|
||||
response = await self.async_httpx_client.get(url=url, headers=headers)
|
||||
|
||||
if response.status_code != 200:
|
||||
verbose_logger.error(
|
||||
"GCS object download error: %s", str(response.text)
|
||||
)
|
||||
return None
|
||||
|
||||
verbose_logger.debug(
|
||||
"GCS object download response status code: %s", response.status_code
|
||||
)
|
||||
|
||||
# Return the content of the downloaded object
|
||||
return response.content
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.error("GCS object download error: %s", str(e))
|
||||
return None
|
||||
|
||||
async def delete_gcs_object(self, object_name: str, **kwargs):
|
||||
"""
|
||||
Delete an object from GCS.
|
||||
"""
|
||||
try:
|
||||
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config(
|
||||
kwargs=kwargs
|
||||
)
|
||||
headers = await self.construct_request_headers(
|
||||
vertex_instance=gcs_logging_config["vertex_instance"],
|
||||
service_account_json=gcs_logging_config["path_service_account"],
|
||||
)
|
||||
bucket_name = gcs_logging_config["bucket_name"]
|
||||
bucket_name, object_name = self._handle_folders_in_bucket_name(
|
||||
bucket_name=bucket_name,
|
||||
object_name=object_name,
|
||||
)
|
||||
|
||||
url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}"
|
||||
|
||||
# Send the DELETE request to delete the object
|
||||
response = await self.async_httpx_client.delete(url=url, headers=headers)
|
||||
|
||||
if (response.status_code != 200) or (response.status_code != 204):
|
||||
verbose_logger.error(
|
||||
"GCS object delete error: %s, status code: %s",
|
||||
str(response.text),
|
||||
response.status_code,
|
||||
)
|
||||
return None
|
||||
|
||||
verbose_logger.debug(
|
||||
"GCS object delete response status code: %s, response: %s",
|
||||
response.status_code,
|
||||
response.text,
|
||||
)
|
||||
|
||||
# Return the content of the downloaded object
|
||||
return response.text
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.error("GCS object download error: %s", str(e))
|
||||
return None
|
||||
|
||||
async def _log_json_data_on_gcs(
|
||||
self,
|
||||
headers: Dict[str, str],
|
||||
bucket_name: str,
|
||||
object_name: str,
|
||||
logging_payload: Union[StandardLoggingPayload, str],
|
||||
):
|
||||
"""
|
||||
Helper function to make POST request to GCS Bucket in the specified bucket.
|
||||
"""
|
||||
if isinstance(logging_payload, str):
|
||||
json_logged_payload = logging_payload
|
||||
else:
|
||||
json_logged_payload = json.dumps(logging_payload, default=str)
|
||||
|
||||
bucket_name, object_name = self._handle_folders_in_bucket_name(
|
||||
bucket_name=bucket_name,
|
||||
object_name=object_name,
|
||||
)
|
||||
|
||||
response = await self.async_httpx_client.post(
|
||||
headers=headers,
|
||||
url=f"https://storage.googleapis.com/upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}",
|
||||
data=json_logged_payload,
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
verbose_logger.error("GCS Bucket logging error: %s", str(response.text))
|
||||
|
||||
verbose_logger.debug("GCS Bucket response %s", response)
|
||||
verbose_logger.debug("GCS Bucket status code %s", response.status_code)
|
||||
verbose_logger.debug("GCS Bucket response.text %s", response.text)
|
||||
|
||||
return response.json()
|
||||
Reference in New Issue
Block a user