structure saas with tools
This commit is contained in:
@@ -0,0 +1,500 @@
|
||||
import collections.abc as collections
|
||||
import json
|
||||
import os
|
||||
import warnings
|
||||
from functools import wraps
|
||||
from pathlib import Path
|
||||
from shutil import copytree
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from huggingface_hub import ModelHubMixin, snapshot_download
|
||||
from huggingface_hub.utils import (
|
||||
get_tf_version,
|
||||
is_graphviz_available,
|
||||
is_pydot_available,
|
||||
is_tf_available,
|
||||
yaml_dump,
|
||||
)
|
||||
|
||||
from . import constants
|
||||
from .hf_api import HfApi
|
||||
from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args
|
||||
from .utils._typing import CallableT
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
keras = None
|
||||
if is_tf_available():
|
||||
# Depending on which version of TensorFlow is installed, we need to import
|
||||
# keras from the correct location.
|
||||
# See https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1.
|
||||
# Note: saving a keras model only works with Keras<3.0.
|
||||
try:
|
||||
import tf_keras as keras # type: ignore
|
||||
except ImportError:
|
||||
import tensorflow as tf # type: ignore
|
||||
|
||||
keras = tf.keras
|
||||
|
||||
|
||||
def _requires_keras_2_model(fn: CallableT) -> CallableT:
|
||||
# Wrapper to raise if user tries to save a Keras 3.x model
|
||||
@wraps(fn)
|
||||
def _inner(model, *args, **kwargs):
|
||||
if not hasattr(model, "history"): # hacky way to check if model is Keras 2.x
|
||||
raise NotImplementedError(
|
||||
f"Cannot use '{fn.__name__}': Keras 3.x is not supported."
|
||||
" Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`."
|
||||
)
|
||||
return fn(model, *args, **kwargs)
|
||||
|
||||
return _inner # type: ignore [return-value]
|
||||
|
||||
|
||||
def _flatten_dict(dictionary, parent_key=""):
|
||||
"""Flatten a nested dictionary.
|
||||
Reference: https://stackoverflow.com/a/6027615/10319735
|
||||
|
||||
Args:
|
||||
dictionary (`dict`):
|
||||
The nested dictionary to be flattened.
|
||||
parent_key (`str`):
|
||||
The parent key to be prefixed to the children keys.
|
||||
Necessary for recursing over the nested dictionary.
|
||||
|
||||
Returns:
|
||||
The flattened dictionary.
|
||||
"""
|
||||
items = []
|
||||
for key, value in dictionary.items():
|
||||
new_key = f"{parent_key}.{key}" if parent_key else key
|
||||
if isinstance(value, collections.MutableMapping):
|
||||
items.extend(
|
||||
_flatten_dict(
|
||||
value,
|
||||
new_key,
|
||||
).items()
|
||||
)
|
||||
else:
|
||||
items.append((new_key, value))
|
||||
return dict(items)
|
||||
|
||||
|
||||
def _create_hyperparameter_table(model):
|
||||
"""Parse hyperparameter dictionary into a markdown table."""
|
||||
table = None
|
||||
if model.optimizer is not None:
|
||||
optimizer_params = model.optimizer.get_config()
|
||||
# flatten the configuration
|
||||
optimizer_params = _flatten_dict(optimizer_params)
|
||||
optimizer_params["training_precision"] = keras.mixed_precision.global_policy().name
|
||||
table = "| Hyperparameters | Value |\n| :-- | :-- |\n"
|
||||
for key, value in optimizer_params.items():
|
||||
table += f"| {key} | {value} |\n"
|
||||
return table
|
||||
|
||||
|
||||
def _plot_network(model, save_directory):
|
||||
keras.utils.plot_model(
|
||||
model,
|
||||
to_file=f"{save_directory}/model.png",
|
||||
show_shapes=False,
|
||||
show_dtype=False,
|
||||
show_layer_names=True,
|
||||
rankdir="TB",
|
||||
expand_nested=False,
|
||||
dpi=96,
|
||||
layer_range=None,
|
||||
)
|
||||
|
||||
|
||||
def _create_model_card(
|
||||
model,
|
||||
repo_dir: Path,
|
||||
plot_model: bool = True,
|
||||
metadata: Optional[dict] = None,
|
||||
):
|
||||
"""
|
||||
Creates a model card for the repository.
|
||||
|
||||
Do not overwrite an existing README.md file.
|
||||
"""
|
||||
readme_path = repo_dir / "README.md"
|
||||
if readme_path.exists():
|
||||
return
|
||||
|
||||
hyperparameters = _create_hyperparameter_table(model)
|
||||
if plot_model and is_graphviz_available() and is_pydot_available():
|
||||
_plot_network(model, repo_dir)
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
metadata["library_name"] = "keras"
|
||||
model_card: str = "---\n"
|
||||
model_card += yaml_dump(metadata, default_flow_style=False)
|
||||
model_card += "---\n"
|
||||
model_card += "\n## Model description\n\nMore information needed\n"
|
||||
model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
|
||||
model_card += "\n## Training and evaluation data\n\nMore information needed\n"
|
||||
if hyperparameters is not None:
|
||||
model_card += "\n## Training procedure\n"
|
||||
model_card += "\n### Training hyperparameters\n"
|
||||
model_card += "\nThe following hyperparameters were used during training:\n\n"
|
||||
model_card += hyperparameters
|
||||
model_card += "\n"
|
||||
if plot_model and os.path.exists(f"{repo_dir}/model.png"):
|
||||
model_card += "\n ## Model Plot\n"
|
||||
model_card += "\n<details>"
|
||||
model_card += "\n<summary>View Model Plot</summary>\n"
|
||||
path_to_plot = "./model.png"
|
||||
model_card += f"\n\n"
|
||||
model_card += "\n</details>"
|
||||
|
||||
readme_path.write_text(model_card)
|
||||
|
||||
|
||||
@_requires_keras_2_model
|
||||
def save_pretrained_keras(
|
||||
model,
|
||||
save_directory: Union[str, Path],
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
include_optimizer: bool = False,
|
||||
plot_model: bool = True,
|
||||
tags: Optional[Union[list, str]] = None,
|
||||
**model_save_kwargs,
|
||||
):
|
||||
"""
|
||||
Saves a Keras model to save_directory in SavedModel format. Use this if
|
||||
you're using the Functional or Sequential APIs.
|
||||
|
||||
Args:
|
||||
model (`Keras.Model`):
|
||||
The [Keras
|
||||
model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
|
||||
you'd like to save. The model must be compiled and built.
|
||||
save_directory (`str` or `Path`):
|
||||
Specify directory in which you want to save the Keras model.
|
||||
config (`dict`, *optional*):
|
||||
Configuration object to be saved alongside the model weights.
|
||||
include_optimizer(`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to include optimizer in serialization.
|
||||
plot_model (`bool`, *optional*, defaults to `True`):
|
||||
Setting this to `True` will plot the model and put it in the model
|
||||
card. Requires graphviz and pydot to be installed.
|
||||
tags (Union[`str`,`list`], *optional*):
|
||||
List of tags that are related to model or string of a single tag. See example tags
|
||||
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
|
||||
model_save_kwargs(`dict`, *optional*):
|
||||
model_save_kwargs will be passed to
|
||||
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
|
||||
"""
|
||||
if keras is None:
|
||||
raise ImportError("Called a Tensorflow-specific function but could not import it.")
|
||||
|
||||
if not model.built:
|
||||
raise ValueError("Model should be built before trying to save")
|
||||
|
||||
save_directory = Path(save_directory)
|
||||
save_directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# saving config
|
||||
if config:
|
||||
if not isinstance(config, dict):
|
||||
raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'")
|
||||
|
||||
with (save_directory / constants.CONFIG_NAME).open("w") as f:
|
||||
json.dump(config, f)
|
||||
|
||||
metadata = {}
|
||||
if isinstance(tags, list):
|
||||
metadata["tags"] = tags
|
||||
elif isinstance(tags, str):
|
||||
metadata["tags"] = [tags]
|
||||
|
||||
task_name = model_save_kwargs.pop("task_name", None)
|
||||
if task_name is not None:
|
||||
warnings.warn(
|
||||
"`task_name` input argument is deprecated. Pass `tags` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if "tags" in metadata:
|
||||
metadata["tags"].append(task_name)
|
||||
else:
|
||||
metadata["tags"] = [task_name]
|
||||
|
||||
if model.history is not None:
|
||||
if model.history.history != {}:
|
||||
path = save_directory / "history.json"
|
||||
if path.exists():
|
||||
warnings.warn(
|
||||
"`history.json` file already exists, it will be overwritten by the history of this version.",
|
||||
UserWarning,
|
||||
)
|
||||
with path.open("w", encoding="utf-8") as f:
|
||||
json.dump(model.history.history, f, indent=2, sort_keys=True)
|
||||
|
||||
_create_model_card(model, save_directory, plot_model, metadata)
|
||||
keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs)
|
||||
|
||||
|
||||
def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin":
|
||||
r"""
|
||||
Instantiate a pretrained Keras model from a pre-trained model from the Hub.
|
||||
The model is expected to be in `SavedModel` format.
|
||||
|
||||
Args:
|
||||
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||||
Can be either:
|
||||
- A string, the `model id` of a pretrained model hosted inside a
|
||||
model repo on huggingface.co. Valid model ids can be located
|
||||
at the root-level, like `bert-base-uncased`, or namespaced
|
||||
under a user or organization name, like
|
||||
`dbmdz/bert-base-german-cased`.
|
||||
- You can add `revision` by appending `@` at the end of model_id
|
||||
simply like this: `dbmdz/bert-base-german-cased@main` Revision
|
||||
is the specific model version to use. It can be a branch name,
|
||||
a tag name, or a commit id, since we use a git-based system
|
||||
for storing models and other artifacts on huggingface.co, so
|
||||
`revision` can be any identifier allowed by git.
|
||||
- A path to a `directory` containing model weights saved using
|
||||
[`~transformers.PreTrainedModel.save_pretrained`], e.g.,
|
||||
`./my_model_directory/`.
|
||||
- `None` if you are both providing the configuration and state
|
||||
dictionary (resp. with keyword arguments `config` and
|
||||
`state_dict`).
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether to force the (re-)download of the model weights and
|
||||
configuration files, overriding the cached versions if they exist.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g.,
|
||||
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The
|
||||
proxies are used on each request.
|
||||
token (`str` or `bool`, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If
|
||||
`True`, will use the token generated when running `transformers-cli
|
||||
login` (stored in `~/.huggingface`).
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory in which a downloaded pretrained model
|
||||
configuration should be cached if the standard cache should not be
|
||||
used.
|
||||
local_files_only(`bool`, *optional*, defaults to `False`):
|
||||
Whether to only look at local files (i.e., do not try to download
|
||||
the model).
|
||||
model_kwargs (`Dict`, *optional*):
|
||||
model_kwargs will be passed to the model during initialization
|
||||
|
||||
<Tip>
|
||||
|
||||
Passing `token=True` is required when you want to use a private
|
||||
model.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
return KerasModelHubMixin.from_pretrained(*args, **kwargs)
|
||||
|
||||
|
||||
@validate_hf_hub_args
|
||||
@_requires_keras_2_model
|
||||
def push_to_hub_keras(
|
||||
model,
|
||||
repo_id: str,
|
||||
*,
|
||||
config: Optional[dict] = None,
|
||||
commit_message: str = "Push Keras model using huggingface_hub.",
|
||||
private: Optional[bool] = None,
|
||||
api_endpoint: Optional[str] = None,
|
||||
token: Optional[str] = None,
|
||||
branch: Optional[str] = None,
|
||||
create_pr: Optional[bool] = None,
|
||||
allow_patterns: Optional[Union[List[str], str]] = None,
|
||||
ignore_patterns: Optional[Union[List[str], str]] = None,
|
||||
delete_patterns: Optional[Union[List[str], str]] = None,
|
||||
log_dir: Optional[str] = None,
|
||||
include_optimizer: bool = False,
|
||||
tags: Optional[Union[list, str]] = None,
|
||||
plot_model: bool = True,
|
||||
**model_save_kwargs,
|
||||
):
|
||||
"""
|
||||
Upload model checkpoint to the Hub.
|
||||
|
||||
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
|
||||
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
|
||||
details.
|
||||
|
||||
Args:
|
||||
model (`Keras.Model`):
|
||||
The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the
|
||||
Hub. The model must be compiled and built.
|
||||
repo_id (`str`):
|
||||
ID of the repository to push to (example: `"username/my-model"`).
|
||||
commit_message (`str`, *optional*, defaults to "Add Keras model"):
|
||||
Message to commit while pushing.
|
||||
private (`bool`, *optional*):
|
||||
Whether the repository created should be private.
|
||||
If `None` (default), the repo will be public unless the organization's default is private.
|
||||
api_endpoint (`str`, *optional*):
|
||||
The API endpoint to use when pushing the model to the hub.
|
||||
token (`str`, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If
|
||||
not set, will use the token set when logging in with
|
||||
`huggingface-cli login` (stored in `~/.huggingface`).
|
||||
branch (`str`, *optional*):
|
||||
The git branch on which to push the model. This defaults to
|
||||
the default branch as specified in your repository, which
|
||||
defaults to `"main"`.
|
||||
create_pr (`boolean`, *optional*):
|
||||
Whether or not to create a Pull Request from `branch` with that commit.
|
||||
Defaults to `False`.
|
||||
config (`dict`, *optional*):
|
||||
Configuration object to be saved alongside the model weights.
|
||||
allow_patterns (`List[str]` or `str`, *optional*):
|
||||
If provided, only files matching at least one pattern are pushed.
|
||||
ignore_patterns (`List[str]` or `str`, *optional*):
|
||||
If provided, files matching any of the patterns are not pushed.
|
||||
delete_patterns (`List[str]` or `str`, *optional*):
|
||||
If provided, remote files matching any of the patterns will be deleted from the repo.
|
||||
log_dir (`str`, *optional*):
|
||||
TensorBoard logging directory to be pushed. The Hub automatically
|
||||
hosts and displays a TensorBoard instance if log files are included
|
||||
in the repository.
|
||||
include_optimizer (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to include optimizer during serialization.
|
||||
tags (Union[`list`, `str`], *optional*):
|
||||
List of tags that are related to model or string of a single tag. See example tags
|
||||
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
|
||||
plot_model (`bool`, *optional*, defaults to `True`):
|
||||
Setting this to `True` will plot the model and put it in the model
|
||||
card. Requires graphviz and pydot to be installed.
|
||||
model_save_kwargs(`dict`, *optional*):
|
||||
model_save_kwargs will be passed to
|
||||
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
|
||||
|
||||
Returns:
|
||||
The url of the commit of your model in the given repository.
|
||||
"""
|
||||
api = HfApi(endpoint=api_endpoint)
|
||||
repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id
|
||||
|
||||
# Push the files to the repo in a single commit
|
||||
with SoftTemporaryDirectory() as tmp:
|
||||
saved_path = Path(tmp) / repo_id
|
||||
save_pretrained_keras(
|
||||
model,
|
||||
saved_path,
|
||||
config=config,
|
||||
include_optimizer=include_optimizer,
|
||||
tags=tags,
|
||||
plot_model=plot_model,
|
||||
**model_save_kwargs,
|
||||
)
|
||||
|
||||
# If `log_dir` provided, delete remote logs and upload new ones
|
||||
if log_dir is not None:
|
||||
delete_patterns = (
|
||||
[]
|
||||
if delete_patterns is None
|
||||
else (
|
||||
[delete_patterns] # convert `delete_patterns` to a list
|
||||
if isinstance(delete_patterns, str)
|
||||
else delete_patterns
|
||||
)
|
||||
)
|
||||
delete_patterns.append("logs/*")
|
||||
copytree(log_dir, saved_path / "logs")
|
||||
|
||||
return api.upload_folder(
|
||||
repo_type="model",
|
||||
repo_id=repo_id,
|
||||
folder_path=saved_path,
|
||||
commit_message=commit_message,
|
||||
token=token,
|
||||
revision=branch,
|
||||
create_pr=create_pr,
|
||||
allow_patterns=allow_patterns,
|
||||
ignore_patterns=ignore_patterns,
|
||||
delete_patterns=delete_patterns,
|
||||
)
|
||||
|
||||
|
||||
class KerasModelHubMixin(ModelHubMixin):
|
||||
"""
|
||||
Implementation of [`ModelHubMixin`] to provide model Hub upload/download
|
||||
capabilities to Keras models.
|
||||
|
||||
|
||||
```python
|
||||
>>> import tensorflow as tf
|
||||
>>> from huggingface_hub import KerasModelHubMixin
|
||||
|
||||
|
||||
>>> class MyModel(tf.keras.Model, KerasModelHubMixin):
|
||||
... def __init__(self, **kwargs):
|
||||
... super().__init__()
|
||||
... self.config = kwargs.pop("config", None)
|
||||
... self.dummy_inputs = ...
|
||||
... self.layer = ...
|
||||
|
||||
... def call(self, *args):
|
||||
... return ...
|
||||
|
||||
|
||||
>>> # Initialize and compile the model as you normally would
|
||||
>>> model = MyModel()
|
||||
>>> model.compile(...)
|
||||
>>> # Build the graph by training it or passing dummy inputs
|
||||
>>> _ = model(model.dummy_inputs)
|
||||
>>> # Save model weights to local directory
|
||||
>>> model.save_pretrained("my-awesome-model")
|
||||
>>> # Push model weights to the Hub
|
||||
>>> model.push_to_hub("my-awesome-model")
|
||||
>>> # Download and initialize weights from the Hub
|
||||
>>> model = MyModel.from_pretrained("username/super-cool-model")
|
||||
```
|
||||
"""
|
||||
|
||||
def _save_pretrained(self, save_directory):
|
||||
save_pretrained_keras(self, save_directory)
|
||||
|
||||
@classmethod
|
||||
def _from_pretrained(
|
||||
cls,
|
||||
model_id,
|
||||
revision,
|
||||
cache_dir,
|
||||
force_download,
|
||||
proxies,
|
||||
resume_download,
|
||||
local_files_only,
|
||||
token,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
"""Here we just call [`from_pretrained_keras`] function so both the mixin and
|
||||
functional APIs stay in sync.
|
||||
|
||||
TODO - Some args above aren't used since we are calling
|
||||
snapshot_download instead of hf_hub_download.
|
||||
"""
|
||||
if keras is None:
|
||||
raise ImportError("Called a TensorFlow-specific function but could not import it.")
|
||||
|
||||
# Root is either a local filepath matching model_id or a cached snapshot
|
||||
if not os.path.isdir(model_id):
|
||||
storage_folder = snapshot_download(
|
||||
repo_id=model_id,
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
library_name="keras",
|
||||
library_version=get_tf_version(),
|
||||
)
|
||||
else:
|
||||
storage_folder = model_id
|
||||
|
||||
# TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here...
|
||||
model = keras.models.load_model(storage_folder)
|
||||
|
||||
# For now, we add a new attribute, config, to store the config loaded from the hub/a local dir.
|
||||
model.config = config
|
||||
|
||||
return model
|
||||
Reference in New Issue
Block a user