structure saas with tools
This commit is contained in:
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,188 @@
|
||||
# This file is auto-generated by `utils/generate_inference_types.py`.
|
||||
# Do not modify it manually.
|
||||
#
|
||||
# ruff: noqa: F401
|
||||
|
||||
from .audio_classification import (
|
||||
AudioClassificationInput,
|
||||
AudioClassificationOutputElement,
|
||||
AudioClassificationOutputTransform,
|
||||
AudioClassificationParameters,
|
||||
)
|
||||
from .audio_to_audio import AudioToAudioInput, AudioToAudioOutputElement
|
||||
from .automatic_speech_recognition import (
|
||||
AutomaticSpeechRecognitionEarlyStoppingEnum,
|
||||
AutomaticSpeechRecognitionGenerationParameters,
|
||||
AutomaticSpeechRecognitionInput,
|
||||
AutomaticSpeechRecognitionOutput,
|
||||
AutomaticSpeechRecognitionOutputChunk,
|
||||
AutomaticSpeechRecognitionParameters,
|
||||
)
|
||||
from .base import BaseInferenceType
|
||||
from .chat_completion import (
|
||||
ChatCompletionInput,
|
||||
ChatCompletionInputFunctionDefinition,
|
||||
ChatCompletionInputFunctionName,
|
||||
ChatCompletionInputGrammarType,
|
||||
ChatCompletionInputGrammarTypeType,
|
||||
ChatCompletionInputMessage,
|
||||
ChatCompletionInputMessageChunk,
|
||||
ChatCompletionInputMessageChunkType,
|
||||
ChatCompletionInputStreamOptions,
|
||||
ChatCompletionInputTool,
|
||||
ChatCompletionInputToolCall,
|
||||
ChatCompletionInputToolChoiceClass,
|
||||
ChatCompletionInputToolChoiceEnum,
|
||||
ChatCompletionInputURL,
|
||||
ChatCompletionOutput,
|
||||
ChatCompletionOutputComplete,
|
||||
ChatCompletionOutputFunctionDefinition,
|
||||
ChatCompletionOutputLogprob,
|
||||
ChatCompletionOutputLogprobs,
|
||||
ChatCompletionOutputMessage,
|
||||
ChatCompletionOutputToolCall,
|
||||
ChatCompletionOutputTopLogprob,
|
||||
ChatCompletionOutputUsage,
|
||||
ChatCompletionStreamOutput,
|
||||
ChatCompletionStreamOutputChoice,
|
||||
ChatCompletionStreamOutputDelta,
|
||||
ChatCompletionStreamOutputDeltaToolCall,
|
||||
ChatCompletionStreamOutputFunction,
|
||||
ChatCompletionStreamOutputLogprob,
|
||||
ChatCompletionStreamOutputLogprobs,
|
||||
ChatCompletionStreamOutputTopLogprob,
|
||||
ChatCompletionStreamOutputUsage,
|
||||
)
|
||||
from .depth_estimation import DepthEstimationInput, DepthEstimationOutput
|
||||
from .document_question_answering import (
|
||||
DocumentQuestionAnsweringInput,
|
||||
DocumentQuestionAnsweringInputData,
|
||||
DocumentQuestionAnsweringOutputElement,
|
||||
DocumentQuestionAnsweringParameters,
|
||||
)
|
||||
from .feature_extraction import FeatureExtractionInput, FeatureExtractionInputTruncationDirection
|
||||
from .fill_mask import FillMaskInput, FillMaskOutputElement, FillMaskParameters
|
||||
from .image_classification import (
|
||||
ImageClassificationInput,
|
||||
ImageClassificationOutputElement,
|
||||
ImageClassificationOutputTransform,
|
||||
ImageClassificationParameters,
|
||||
)
|
||||
from .image_segmentation import (
|
||||
ImageSegmentationInput,
|
||||
ImageSegmentationOutputElement,
|
||||
ImageSegmentationParameters,
|
||||
ImageSegmentationSubtask,
|
||||
)
|
||||
from .image_to_image import ImageToImageInput, ImageToImageOutput, ImageToImageParameters, ImageToImageTargetSize
|
||||
from .image_to_text import (
|
||||
ImageToTextEarlyStoppingEnum,
|
||||
ImageToTextGenerationParameters,
|
||||
ImageToTextInput,
|
||||
ImageToTextOutput,
|
||||
ImageToTextParameters,
|
||||
)
|
||||
from .object_detection import (
|
||||
ObjectDetectionBoundingBox,
|
||||
ObjectDetectionInput,
|
||||
ObjectDetectionOutputElement,
|
||||
ObjectDetectionParameters,
|
||||
)
|
||||
from .question_answering import (
|
||||
QuestionAnsweringInput,
|
||||
QuestionAnsweringInputData,
|
||||
QuestionAnsweringOutputElement,
|
||||
QuestionAnsweringParameters,
|
||||
)
|
||||
from .sentence_similarity import SentenceSimilarityInput, SentenceSimilarityInputData
|
||||
from .summarization import (
|
||||
SummarizationInput,
|
||||
SummarizationOutput,
|
||||
SummarizationParameters,
|
||||
SummarizationTruncationStrategy,
|
||||
)
|
||||
from .table_question_answering import (
|
||||
Padding,
|
||||
TableQuestionAnsweringInput,
|
||||
TableQuestionAnsweringInputData,
|
||||
TableQuestionAnsweringOutputElement,
|
||||
TableQuestionAnsweringParameters,
|
||||
)
|
||||
from .text2text_generation import (
|
||||
Text2TextGenerationInput,
|
||||
Text2TextGenerationOutput,
|
||||
Text2TextGenerationParameters,
|
||||
Text2TextGenerationTruncationStrategy,
|
||||
)
|
||||
from .text_classification import (
|
||||
TextClassificationInput,
|
||||
TextClassificationOutputElement,
|
||||
TextClassificationOutputTransform,
|
||||
TextClassificationParameters,
|
||||
)
|
||||
from .text_generation import (
|
||||
TextGenerationInput,
|
||||
TextGenerationInputGenerateParameters,
|
||||
TextGenerationInputGrammarType,
|
||||
TextGenerationOutput,
|
||||
TextGenerationOutputBestOfSequence,
|
||||
TextGenerationOutputDetails,
|
||||
TextGenerationOutputFinishReason,
|
||||
TextGenerationOutputPrefillToken,
|
||||
TextGenerationOutputToken,
|
||||
TextGenerationStreamOutput,
|
||||
TextGenerationStreamOutputStreamDetails,
|
||||
TextGenerationStreamOutputToken,
|
||||
TypeEnum,
|
||||
)
|
||||
from .text_to_audio import (
|
||||
TextToAudioEarlyStoppingEnum,
|
||||
TextToAudioGenerationParameters,
|
||||
TextToAudioInput,
|
||||
TextToAudioOutput,
|
||||
TextToAudioParameters,
|
||||
)
|
||||
from .text_to_image import TextToImageInput, TextToImageOutput, TextToImageParameters
|
||||
from .text_to_speech import (
|
||||
TextToSpeechEarlyStoppingEnum,
|
||||
TextToSpeechGenerationParameters,
|
||||
TextToSpeechInput,
|
||||
TextToSpeechOutput,
|
||||
TextToSpeechParameters,
|
||||
)
|
||||
from .text_to_video import TextToVideoInput, TextToVideoOutput, TextToVideoParameters
|
||||
from .token_classification import (
|
||||
TokenClassificationAggregationStrategy,
|
||||
TokenClassificationInput,
|
||||
TokenClassificationOutputElement,
|
||||
TokenClassificationParameters,
|
||||
)
|
||||
from .translation import TranslationInput, TranslationOutput, TranslationParameters, TranslationTruncationStrategy
|
||||
from .video_classification import (
|
||||
VideoClassificationInput,
|
||||
VideoClassificationOutputElement,
|
||||
VideoClassificationOutputTransform,
|
||||
VideoClassificationParameters,
|
||||
)
|
||||
from .visual_question_answering import (
|
||||
VisualQuestionAnsweringInput,
|
||||
VisualQuestionAnsweringInputData,
|
||||
VisualQuestionAnsweringOutputElement,
|
||||
VisualQuestionAnsweringParameters,
|
||||
)
|
||||
from .zero_shot_classification import (
|
||||
ZeroShotClassificationInput,
|
||||
ZeroShotClassificationOutputElement,
|
||||
ZeroShotClassificationParameters,
|
||||
)
|
||||
from .zero_shot_image_classification import (
|
||||
ZeroShotImageClassificationInput,
|
||||
ZeroShotImageClassificationOutputElement,
|
||||
ZeroShotImageClassificationParameters,
|
||||
)
|
||||
from .zero_shot_object_detection import (
|
||||
ZeroShotObjectDetectionBoundingBox,
|
||||
ZeroShotObjectDetectionInput,
|
||||
ZeroShotObjectDetectionOutputElement,
|
||||
ZeroShotObjectDetectionParameters,
|
||||
)
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,43 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
AudioClassificationOutputTransform = Literal["sigmoid", "softmax", "none"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AudioClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Audio Classification"""
|
||||
|
||||
function_to_apply: Optional["AudioClassificationOutputTransform"] = None
|
||||
"""The function to apply to the model outputs in order to retrieve the scores."""
|
||||
top_k: Optional[int] = None
|
||||
"""When specified, limits the output to the top K most probable classes."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AudioClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Audio Classification inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input audio data as a base64-encoded string. If no `parameters` are provided, you can
|
||||
also provide the audio data as a raw bytes payload.
|
||||
"""
|
||||
parameters: Optional[AudioClassificationParameters] = None
|
||||
"""Additional inference parameters for Audio Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AudioClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs for Audio Classification inference"""
|
||||
|
||||
label: str
|
||||
"""The predicted class label."""
|
||||
score: float
|
||||
"""The corresponding probability."""
|
||||
@@ -0,0 +1,30 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AudioToAudioInput(BaseInferenceType):
|
||||
"""Inputs for Audio to Audio inference"""
|
||||
|
||||
inputs: Any
|
||||
"""The input audio data"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AudioToAudioOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Audio To Audio task
|
||||
A generated audio file with its label.
|
||||
"""
|
||||
|
||||
blob: Any
|
||||
"""The generated audio file."""
|
||||
content_type: str
|
||||
"""The content type of audio file."""
|
||||
label: str
|
||||
"""The label of the audio file."""
|
||||
@@ -0,0 +1,114 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
AutomaticSpeechRecognitionEarlyStoppingEnum = Literal["never"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AutomaticSpeechRecognitionGenerationParameters(BaseInferenceType):
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
do_sample: Optional[bool] = None
|
||||
"""Whether to use sampling instead of greedy decoding when generating new tokens."""
|
||||
early_stopping: Optional[Union[bool, "AutomaticSpeechRecognitionEarlyStoppingEnum"]] = None
|
||||
"""Controls the stopping condition for beam-based methods."""
|
||||
epsilon_cutoff: Optional[float] = None
|
||||
"""If set to float strictly between 0 and 1, only tokens with a conditional probability
|
||||
greater than epsilon_cutoff will be sampled. In the paper, suggested values range from
|
||||
3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language
|
||||
Model Desmoothing](https://hf.co/papers/2210.15191) for more details.
|
||||
"""
|
||||
eta_cutoff: Optional[float] = None
|
||||
"""Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to
|
||||
float strictly between 0 and 1, a token is only considered if it is greater than either
|
||||
eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter
|
||||
term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In
|
||||
the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model.
|
||||
See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191)
|
||||
for more details.
|
||||
"""
|
||||
max_length: Optional[int] = None
|
||||
"""The maximum length (in tokens) of the generated text, including the input."""
|
||||
max_new_tokens: Optional[int] = None
|
||||
"""The maximum number of tokens to generate. Takes precedence over max_length."""
|
||||
min_length: Optional[int] = None
|
||||
"""The minimum length (in tokens) of the generated text, including the input."""
|
||||
min_new_tokens: Optional[int] = None
|
||||
"""The minimum number of tokens to generate. Takes precedence over min_length."""
|
||||
num_beam_groups: Optional[int] = None
|
||||
"""Number of groups to divide num_beams into in order to ensure diversity among different
|
||||
groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details.
|
||||
"""
|
||||
num_beams: Optional[int] = None
|
||||
"""Number of beams to use for beam search."""
|
||||
penalty_alpha: Optional[float] = None
|
||||
"""The value balances the model confidence and the degeneration penalty in contrastive
|
||||
search decoding.
|
||||
"""
|
||||
temperature: Optional[float] = None
|
||||
"""The value used to modulate the next token probabilities."""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
||||
top_p: Optional[float] = None
|
||||
"""If set to float < 1, only the smallest set of most probable tokens with probabilities
|
||||
that add up to top_p or higher are kept for generation.
|
||||
"""
|
||||
typical_p: Optional[float] = None
|
||||
"""Local typicality measures how similar the conditional probability of predicting a target
|
||||
token next is to the expected conditional probability of predicting a random token next,
|
||||
given the partial text already generated. If set to float < 1, the smallest set of the
|
||||
most locally typical tokens with probabilities that add up to typical_p or higher are
|
||||
kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details.
|
||||
"""
|
||||
use_cache: Optional[bool] = None
|
||||
"""Whether the model should use the past last key/values attentions to speed up decoding"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AutomaticSpeechRecognitionParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Automatic Speech Recognition"""
|
||||
|
||||
return_timestamps: Optional[bool] = None
|
||||
"""Whether to output corresponding timestamps with the generated text"""
|
||||
# Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers
|
||||
generate_kwargs: Optional[AutomaticSpeechRecognitionGenerationParameters] = None
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AutomaticSpeechRecognitionInput(BaseInferenceType):
|
||||
"""Inputs for Automatic Speech Recognition inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input audio data as a base64-encoded string. If no `parameters` are provided, you can
|
||||
also provide the audio data as a raw bytes payload.
|
||||
"""
|
||||
parameters: Optional[AutomaticSpeechRecognitionParameters] = None
|
||||
"""Additional inference parameters for Automatic Speech Recognition"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AutomaticSpeechRecognitionOutputChunk(BaseInferenceType):
|
||||
text: str
|
||||
"""A chunk of text identified by the model"""
|
||||
timestamp: List[float]
|
||||
"""The start and end timestamps corresponding with the text"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class AutomaticSpeechRecognitionOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Automatic Speech Recognition task"""
|
||||
|
||||
text: str
|
||||
"""The recognized text."""
|
||||
chunks: Optional[List[AutomaticSpeechRecognitionOutputChunk]] = None
|
||||
"""When returnTimestamps is enabled, chunks contains a list of audio chunks identified by
|
||||
the model.
|
||||
"""
|
||||
@@ -0,0 +1,161 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Contains a base class for all inference types."""
|
||||
|
||||
import inspect
|
||||
import json
|
||||
from dataclasses import asdict, dataclass
|
||||
from typing import Any, Dict, List, Type, TypeVar, Union, get_args
|
||||
|
||||
|
||||
T = TypeVar("T", bound="BaseInferenceType")
|
||||
|
||||
|
||||
def _repr_with_extra(self):
|
||||
fields = list(self.__dataclass_fields__.keys())
|
||||
other_fields = list(k for k in self.__dict__ if k not in fields)
|
||||
return f"{self.__class__.__name__}({', '.join(f'{k}={self.__dict__[k]!r}' for k in fields + other_fields)})"
|
||||
|
||||
|
||||
def dataclass_with_extra(cls: Type[T]) -> Type[T]:
|
||||
"""Decorator to add a custom __repr__ method to a dataclass, showing all fields, including extra ones.
|
||||
|
||||
This decorator only works with dataclasses that inherit from `BaseInferenceType`.
|
||||
"""
|
||||
cls = dataclass(cls)
|
||||
cls.__repr__ = _repr_with_extra # type: ignore[method-assign]
|
||||
return cls
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseInferenceType(dict):
|
||||
"""Base class for all inference types.
|
||||
|
||||
Object is a dataclass and a dict for backward compatibility but plan is to remove the dict part in the future.
|
||||
|
||||
Handle parsing from dict, list and json strings in a permissive way to ensure future-compatibility (e.g. all fields
|
||||
are made optional, and non-expected fields are added as dict attributes).
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def parse_obj_as_list(cls: Type[T], data: Union[bytes, str, List, Dict]) -> List[T]:
|
||||
"""Alias to parse server response and return a single instance.
|
||||
|
||||
See `parse_obj` for more details.
|
||||
"""
|
||||
output = cls.parse_obj(data)
|
||||
if not isinstance(output, list):
|
||||
raise ValueError(f"Invalid input data for {cls}. Expected a list, but got {type(output)}.")
|
||||
return output
|
||||
|
||||
@classmethod
|
||||
def parse_obj_as_instance(cls: Type[T], data: Union[bytes, str, List, Dict]) -> T:
|
||||
"""Alias to parse server response and return a single instance.
|
||||
|
||||
See `parse_obj` for more details.
|
||||
"""
|
||||
output = cls.parse_obj(data)
|
||||
if isinstance(output, list):
|
||||
raise ValueError(f"Invalid input data for {cls}. Expected a single instance, but got a list.")
|
||||
return output
|
||||
|
||||
@classmethod
|
||||
def parse_obj(cls: Type[T], data: Union[bytes, str, List, Dict]) -> Union[List[T], T]:
|
||||
"""Parse server response as a dataclass or list of dataclasses.
|
||||
|
||||
To enable future-compatibility, we want to handle cases where the server return more fields than expected.
|
||||
In such cases, we don't want to raise an error but still create the dataclass object. Remaining fields are
|
||||
added as dict attributes.
|
||||
"""
|
||||
# Parse server response (from bytes)
|
||||
if isinstance(data, bytes):
|
||||
data = data.decode()
|
||||
if isinstance(data, str):
|
||||
data = json.loads(data)
|
||||
|
||||
# If a list, parse each item individually
|
||||
if isinstance(data, List):
|
||||
return [cls.parse_obj(d) for d in data] # type: ignore [misc]
|
||||
|
||||
# At this point, we expect a dict
|
||||
if not isinstance(data, dict):
|
||||
raise ValueError(f"Invalid data type: {type(data)}")
|
||||
|
||||
init_values = {}
|
||||
other_values = {}
|
||||
for key, value in data.items():
|
||||
key = normalize_key(key)
|
||||
if key in cls.__dataclass_fields__ and cls.__dataclass_fields__[key].init:
|
||||
if isinstance(value, dict) or isinstance(value, list):
|
||||
field_type = cls.__dataclass_fields__[key].type
|
||||
|
||||
# if `field_type` is a `BaseInferenceType`, parse it
|
||||
if inspect.isclass(field_type) and issubclass(field_type, BaseInferenceType):
|
||||
value = field_type.parse_obj(value)
|
||||
|
||||
# otherwise, recursively parse nested dataclasses (if possible)
|
||||
# `get_args` returns handle Union and Optional for us
|
||||
else:
|
||||
expected_types = get_args(field_type)
|
||||
for expected_type in expected_types:
|
||||
if getattr(expected_type, "_name", None) == "List":
|
||||
expected_type = get_args(expected_type)[
|
||||
0
|
||||
] # assume same type for all items in the list
|
||||
if inspect.isclass(expected_type) and issubclass(expected_type, BaseInferenceType):
|
||||
value = expected_type.parse_obj(value)
|
||||
break
|
||||
init_values[key] = value
|
||||
else:
|
||||
other_values[key] = value
|
||||
|
||||
# Make all missing fields default to None
|
||||
# => ensure that dataclass initialization will never fail even if the server does not return all fields.
|
||||
for key in cls.__dataclass_fields__:
|
||||
if key not in init_values:
|
||||
init_values[key] = None
|
||||
|
||||
# Initialize dataclass with expected values
|
||||
item = cls(**init_values)
|
||||
|
||||
# Add remaining fields as dict attributes
|
||||
item.update(other_values)
|
||||
|
||||
# Add remaining fields as extra dataclass fields.
|
||||
# They won't be part of the dataclass fields but will be accessible as attributes.
|
||||
# Use @dataclass_with_extra to show them in __repr__.
|
||||
item.__dict__.update(other_values)
|
||||
return item
|
||||
|
||||
def __post_init__(self):
|
||||
self.update(asdict(self))
|
||||
|
||||
def __setitem__(self, __key: Any, __value: Any) -> None:
|
||||
# Hacky way to keep dataclass values in sync when dict is updated
|
||||
super().__setitem__(__key, __value)
|
||||
if __key in self.__dataclass_fields__ and getattr(self, __key, None) != __value:
|
||||
self.__setattr__(__key, __value)
|
||||
return
|
||||
|
||||
def __setattr__(self, __name: str, __value: Any) -> None:
|
||||
# Hacky way to keep dict values is sync when dataclass is updated
|
||||
super().__setattr__(__name, __value)
|
||||
if self.get(__name) != __value:
|
||||
self[__name] = __value
|
||||
return
|
||||
|
||||
|
||||
def normalize_key(key: str) -> str:
|
||||
# e.g "content-type" -> "content_type", "Accept" -> "accept"
|
||||
return key.replace("-", "_").replace(" ", "_").lower()
|
||||
@@ -0,0 +1,311 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, List, Literal, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputURL(BaseInferenceType):
|
||||
url: str
|
||||
|
||||
|
||||
ChatCompletionInputMessageChunkType = Literal["text", "image_url"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputMessageChunk(BaseInferenceType):
|
||||
type: "ChatCompletionInputMessageChunkType"
|
||||
image_url: Optional[ChatCompletionInputURL] = None
|
||||
text: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputFunctionDefinition(BaseInferenceType):
|
||||
arguments: Any
|
||||
name: str
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputToolCall(BaseInferenceType):
|
||||
function: ChatCompletionInputFunctionDefinition
|
||||
id: str
|
||||
type: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputMessage(BaseInferenceType):
|
||||
role: str
|
||||
content: Optional[Union[List[ChatCompletionInputMessageChunk], str]] = None
|
||||
name: Optional[str] = None
|
||||
tool_calls: Optional[List[ChatCompletionInputToolCall]] = None
|
||||
|
||||
|
||||
ChatCompletionInputGrammarTypeType = Literal["json", "regex"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputGrammarType(BaseInferenceType):
|
||||
type: "ChatCompletionInputGrammarTypeType"
|
||||
value: Any
|
||||
"""A string that represents a [JSON Schema](https://json-schema.org/).
|
||||
JSON Schema is a declarative language that allows to annotate JSON documents
|
||||
with types and descriptions.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputStreamOptions(BaseInferenceType):
|
||||
include_usage: Optional[bool] = None
|
||||
"""If set, an additional chunk will be streamed before the data: [DONE] message. The usage
|
||||
field on this chunk shows the token usage statistics for the entire request, and the
|
||||
choices field will always be an empty array. All other chunks will also include a usage
|
||||
field, but with a null value.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputFunctionName(BaseInferenceType):
|
||||
name: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputToolChoiceClass(BaseInferenceType):
|
||||
function: ChatCompletionInputFunctionName
|
||||
|
||||
|
||||
ChatCompletionInputToolChoiceEnum = Literal["auto", "none", "required"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInputTool(BaseInferenceType):
|
||||
function: ChatCompletionInputFunctionDefinition
|
||||
type: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionInput(BaseInferenceType):
|
||||
"""Chat Completion Input.
|
||||
Auto-generated from TGI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
||||
"""
|
||||
|
||||
messages: List[ChatCompletionInputMessage]
|
||||
"""A list of messages comprising the conversation so far."""
|
||||
frequency_penalty: Optional[float] = None
|
||||
"""Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing
|
||||
frequency in the text so far,
|
||||
decreasing the model's likelihood to repeat the same line verbatim.
|
||||
"""
|
||||
logit_bias: Optional[List[float]] = None
|
||||
"""UNUSED
|
||||
Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON
|
||||
object that maps tokens
|
||||
(specified by their token ID in the tokenizer) to an associated bias value from -100 to
|
||||
100. Mathematically,
|
||||
the bias is added to the logits generated by the model prior to sampling. The exact
|
||||
effect will vary per model,
|
||||
but values between -1 and 1 should decrease or increase likelihood of selection; values
|
||||
like -100 or 100 should
|
||||
result in a ban or exclusive selection of the relevant token.
|
||||
"""
|
||||
logprobs: Optional[bool] = None
|
||||
"""Whether to return log probabilities of the output tokens or not. If true, returns the log
|
||||
probabilities of each
|
||||
output token returned in the content of message.
|
||||
"""
|
||||
max_tokens: Optional[int] = None
|
||||
"""The maximum number of tokens that can be generated in the chat completion."""
|
||||
model: Optional[str] = None
|
||||
"""[UNUSED] ID of the model to use. See the model endpoint compatibility table for details
|
||||
on which models work with the Chat API.
|
||||
"""
|
||||
n: Optional[int] = None
|
||||
"""UNUSED
|
||||
How many chat completion choices to generate for each input message. Note that you will
|
||||
be charged based on the
|
||||
number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
|
||||
"""
|
||||
presence_penalty: Optional[float] = None
|
||||
"""Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they
|
||||
appear in the text so far,
|
||||
increasing the model's likelihood to talk about new topics
|
||||
"""
|
||||
response_format: Optional[ChatCompletionInputGrammarType] = None
|
||||
seed: Optional[int] = None
|
||||
stop: Optional[List[str]] = None
|
||||
"""Up to 4 sequences where the API will stop generating further tokens."""
|
||||
stream: Optional[bool] = None
|
||||
stream_options: Optional[ChatCompletionInputStreamOptions] = None
|
||||
temperature: Optional[float] = None
|
||||
"""What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the
|
||||
output more random, while
|
||||
lower values like 0.2 will make it more focused and deterministic.
|
||||
We generally recommend altering this or `top_p` but not both.
|
||||
"""
|
||||
tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None
|
||||
tool_prompt: Optional[str] = None
|
||||
"""A prompt to be appended before the tools"""
|
||||
tools: Optional[List[ChatCompletionInputTool]] = None
|
||||
"""A list of tools the model may call. Currently, only functions are supported as a tool.
|
||||
Use this to provide a list of
|
||||
functions the model may generate JSON inputs for.
|
||||
"""
|
||||
top_logprobs: Optional[int] = None
|
||||
"""An integer between 0 and 5 specifying the number of most likely tokens to return at each
|
||||
token position, each with
|
||||
an associated log probability. logprobs must be set to true if this parameter is used.
|
||||
"""
|
||||
top_p: Optional[float] = None
|
||||
"""An alternative to sampling with temperature, called nucleus sampling, where the model
|
||||
considers the results of the
|
||||
tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%
|
||||
probability mass are considered.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputTopLogprob(BaseInferenceType):
|
||||
logprob: float
|
||||
token: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputLogprob(BaseInferenceType):
|
||||
logprob: float
|
||||
token: str
|
||||
top_logprobs: List[ChatCompletionOutputTopLogprob]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputLogprobs(BaseInferenceType):
|
||||
content: List[ChatCompletionOutputLogprob]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputFunctionDefinition(BaseInferenceType):
|
||||
arguments: Any
|
||||
name: str
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputToolCall(BaseInferenceType):
|
||||
function: ChatCompletionOutputFunctionDefinition
|
||||
id: str
|
||||
type: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputMessage(BaseInferenceType):
|
||||
role: str
|
||||
content: Optional[str] = None
|
||||
tool_call_id: Optional[str] = None
|
||||
tool_calls: Optional[List[ChatCompletionOutputToolCall]] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputComplete(BaseInferenceType):
|
||||
finish_reason: str
|
||||
index: int
|
||||
message: ChatCompletionOutputMessage
|
||||
logprobs: Optional[ChatCompletionOutputLogprobs] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutputUsage(BaseInferenceType):
|
||||
completion_tokens: int
|
||||
prompt_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionOutput(BaseInferenceType):
|
||||
"""Chat Completion Output.
|
||||
Auto-generated from TGI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
||||
"""
|
||||
|
||||
choices: List[ChatCompletionOutputComplete]
|
||||
created: int
|
||||
id: str
|
||||
model: str
|
||||
system_fingerprint: str
|
||||
usage: ChatCompletionOutputUsage
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputFunction(BaseInferenceType):
|
||||
arguments: str
|
||||
name: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputDeltaToolCall(BaseInferenceType):
|
||||
function: ChatCompletionStreamOutputFunction
|
||||
id: str
|
||||
index: int
|
||||
type: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputDelta(BaseInferenceType):
|
||||
role: str
|
||||
content: Optional[str] = None
|
||||
tool_call_id: Optional[str] = None
|
||||
tool_calls: Optional[List[ChatCompletionStreamOutputDeltaToolCall]] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputTopLogprob(BaseInferenceType):
|
||||
logprob: float
|
||||
token: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputLogprob(BaseInferenceType):
|
||||
logprob: float
|
||||
token: str
|
||||
top_logprobs: List[ChatCompletionStreamOutputTopLogprob]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputLogprobs(BaseInferenceType):
|
||||
content: List[ChatCompletionStreamOutputLogprob]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputChoice(BaseInferenceType):
|
||||
delta: ChatCompletionStreamOutputDelta
|
||||
index: int
|
||||
finish_reason: Optional[str] = None
|
||||
logprobs: Optional[ChatCompletionStreamOutputLogprobs] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutputUsage(BaseInferenceType):
|
||||
completion_tokens: int
|
||||
prompt_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ChatCompletionStreamOutput(BaseInferenceType):
|
||||
"""Chat Completion Stream Output.
|
||||
Auto-generated from TGI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
||||
"""
|
||||
|
||||
choices: List[ChatCompletionStreamOutputChoice]
|
||||
created: int
|
||||
id: str
|
||||
model: str
|
||||
system_fingerprint: str
|
||||
usage: Optional[ChatCompletionStreamOutputUsage] = None
|
||||
@@ -0,0 +1,28 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class DepthEstimationInput(BaseInferenceType):
|
||||
"""Inputs for Depth Estimation inference"""
|
||||
|
||||
inputs: Any
|
||||
"""The input image data"""
|
||||
parameters: Optional[Dict[str, Any]] = None
|
||||
"""Additional inference parameters for Depth Estimation"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class DepthEstimationOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Depth Estimation task"""
|
||||
|
||||
depth: Any
|
||||
"""The predicted depth as an image"""
|
||||
predicted_depth: Any
|
||||
"""The predicted depth as a tensor"""
|
||||
@@ -0,0 +1,80 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class DocumentQuestionAnsweringInputData(BaseInferenceType):
|
||||
"""One (document, question) pair to answer"""
|
||||
|
||||
image: Any
|
||||
"""The image on which the question is asked"""
|
||||
question: str
|
||||
"""A question to ask of the document"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class DocumentQuestionAnsweringParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Document Question Answering"""
|
||||
|
||||
doc_stride: Optional[int] = None
|
||||
"""If the words in the document are too long to fit with the question for the model, it will
|
||||
be split in several chunks with some overlap. This argument controls the size of that
|
||||
overlap.
|
||||
"""
|
||||
handle_impossible_answer: Optional[bool] = None
|
||||
"""Whether to accept impossible as an answer"""
|
||||
lang: Optional[str] = None
|
||||
"""Language to use while running OCR. Defaults to english."""
|
||||
max_answer_len: Optional[int] = None
|
||||
"""The maximum length of predicted answers (e.g., only answers with a shorter length are
|
||||
considered).
|
||||
"""
|
||||
max_question_len: Optional[int] = None
|
||||
"""The maximum length of the question after tokenization. It will be truncated if needed."""
|
||||
max_seq_len: Optional[int] = None
|
||||
"""The maximum length of the total sentence (context + question) in tokens of each chunk
|
||||
passed to the model. The context will be split in several chunks (using doc_stride as
|
||||
overlap) if needed.
|
||||
"""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of answers to return (will be chosen by order of likelihood). Can return less
|
||||
than top_k answers if there are not enough options available within the context.
|
||||
"""
|
||||
word_boxes: Optional[List[Union[List[float], str]]] = None
|
||||
"""A list of words and bounding boxes (normalized 0->1000). If provided, the inference will
|
||||
skip the OCR step and use the provided bounding boxes instead.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class DocumentQuestionAnsweringInput(BaseInferenceType):
|
||||
"""Inputs for Document Question Answering inference"""
|
||||
|
||||
inputs: DocumentQuestionAnsweringInputData
|
||||
"""One (document, question) pair to answer"""
|
||||
parameters: Optional[DocumentQuestionAnsweringParameters] = None
|
||||
"""Additional inference parameters for Document Question Answering"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class DocumentQuestionAnsweringOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Document Question Answering task"""
|
||||
|
||||
answer: str
|
||||
"""The answer to the question."""
|
||||
end: int
|
||||
"""The end word index of the answer (in the OCR’d version of the input or provided word
|
||||
boxes).
|
||||
"""
|
||||
score: float
|
||||
"""The probability associated to the answer."""
|
||||
start: int
|
||||
"""The start word index of the answer (in the OCR’d version of the input or provided word
|
||||
boxes).
|
||||
"""
|
||||
@@ -0,0 +1,36 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
FeatureExtractionInputTruncationDirection = Literal["Left", "Right"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class FeatureExtractionInput(BaseInferenceType):
|
||||
"""Feature Extraction Input.
|
||||
Auto-generated from TEI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tei-import.ts.
|
||||
"""
|
||||
|
||||
inputs: Union[List[str], str]
|
||||
"""The text or list of texts to embed."""
|
||||
normalize: Optional[bool] = None
|
||||
prompt_name: Optional[str] = None
|
||||
"""The name of the prompt that should be used by for encoding. If not set, no prompt
|
||||
will be applied.
|
||||
Must be a key in the `sentence-transformers` configuration `prompts` dictionary.
|
||||
For example if ``prompt_name`` is "query" and the ``prompts`` is {"query": "query: ",
|
||||
...},
|
||||
then the sentence "What is the capital of France?" will be encoded as
|
||||
"query: What is the capital of France?" because the prompt text will be prepended before
|
||||
any text to encode.
|
||||
"""
|
||||
truncate: Optional[bool] = None
|
||||
truncation_direction: Optional["FeatureExtractionInputTruncationDirection"] = None
|
||||
@@ -0,0 +1,47 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class FillMaskParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Fill Mask"""
|
||||
|
||||
targets: Optional[List[str]] = None
|
||||
"""When passed, the model will limit the scores to the passed targets instead of looking up
|
||||
in the whole vocabulary. If the provided targets are not in the model vocab, they will be
|
||||
tokenized and the first resulting token will be used (with a warning, and that might be
|
||||
slower).
|
||||
"""
|
||||
top_k: Optional[int] = None
|
||||
"""When passed, overrides the number of predictions to return."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class FillMaskInput(BaseInferenceType):
|
||||
"""Inputs for Fill Mask inference"""
|
||||
|
||||
inputs: str
|
||||
"""The text with masked tokens"""
|
||||
parameters: Optional[FillMaskParameters] = None
|
||||
"""Additional inference parameters for Fill Mask"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class FillMaskOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Fill Mask task"""
|
||||
|
||||
score: float
|
||||
"""The corresponding probability"""
|
||||
sequence: str
|
||||
"""The corresponding input with the mask token prediction."""
|
||||
token: int
|
||||
"""The predicted token id (to replace the masked one)."""
|
||||
token_str: Any
|
||||
fill_mask_output_token_str: Optional[str] = None
|
||||
"""The predicted token (to replace the masked one)."""
|
||||
@@ -0,0 +1,43 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
ImageClassificationOutputTransform = Literal["sigmoid", "softmax", "none"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Image Classification"""
|
||||
|
||||
function_to_apply: Optional["ImageClassificationOutputTransform"] = None
|
||||
"""The function to apply to the model outputs in order to retrieve the scores."""
|
||||
top_k: Optional[int] = None
|
||||
"""When specified, limits the output to the top K most probable classes."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Image Classification inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input image data as a base64-encoded string. If no `parameters` are provided, you can
|
||||
also provide the image data as a raw bytes payload.
|
||||
"""
|
||||
parameters: Optional[ImageClassificationParameters] = None
|
||||
"""Additional inference parameters for Image Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Image Classification task"""
|
||||
|
||||
label: str
|
||||
"""The predicted class label."""
|
||||
score: float
|
||||
"""The corresponding probability."""
|
||||
@@ -0,0 +1,51 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
ImageSegmentationSubtask = Literal["instance", "panoptic", "semantic"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageSegmentationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Image Segmentation"""
|
||||
|
||||
mask_threshold: Optional[float] = None
|
||||
"""Threshold to use when turning the predicted masks into binary values."""
|
||||
overlap_mask_area_threshold: Optional[float] = None
|
||||
"""Mask overlap threshold to eliminate small, disconnected segments."""
|
||||
subtask: Optional["ImageSegmentationSubtask"] = None
|
||||
"""Segmentation task to be performed, depending on model capabilities."""
|
||||
threshold: Optional[float] = None
|
||||
"""Probability threshold to filter out predicted masks."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageSegmentationInput(BaseInferenceType):
|
||||
"""Inputs for Image Segmentation inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input image data as a base64-encoded string. If no `parameters` are provided, you can
|
||||
also provide the image data as a raw bytes payload.
|
||||
"""
|
||||
parameters: Optional[ImageSegmentationParameters] = None
|
||||
"""Additional inference parameters for Image Segmentation"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageSegmentationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Image Segmentation task
|
||||
A predicted mask / segment
|
||||
"""
|
||||
|
||||
label: str
|
||||
"""The label of the predicted segment."""
|
||||
mask: str
|
||||
"""The corresponding mask as a black-and-white image (base64-encoded)."""
|
||||
score: Optional[float] = None
|
||||
"""The score or confidence degree the model has."""
|
||||
@@ -0,0 +1,56 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToImageTargetSize(BaseInferenceType):
|
||||
"""The size in pixel of the output image."""
|
||||
|
||||
height: int
|
||||
width: int
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToImageParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Image To Image"""
|
||||
|
||||
guidance_scale: Optional[float] = None
|
||||
"""For diffusion models. A higher guidance scale value encourages the model to generate
|
||||
images closely linked to the text prompt at the expense of lower image quality.
|
||||
"""
|
||||
negative_prompt: Optional[str] = None
|
||||
"""One prompt to guide what NOT to include in image generation."""
|
||||
num_inference_steps: Optional[int] = None
|
||||
"""For diffusion models. The number of denoising steps. More denoising steps usually lead to
|
||||
a higher quality image at the expense of slower inference.
|
||||
"""
|
||||
prompt: Optional[str] = None
|
||||
"""The text prompt to guide the image generation."""
|
||||
target_size: Optional[ImageToImageTargetSize] = None
|
||||
"""The size in pixel of the output image."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToImageInput(BaseInferenceType):
|
||||
"""Inputs for Image To Image inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input image data as a base64-encoded string. If no `parameters` are provided, you can
|
||||
also provide the image data as a raw bytes payload.
|
||||
"""
|
||||
parameters: Optional[ImageToImageParameters] = None
|
||||
"""Additional inference parameters for Image To Image"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToImageOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Image To Image task"""
|
||||
|
||||
image: Any
|
||||
"""The output image returned as raw bytes in the payload."""
|
||||
@@ -0,0 +1,101 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
ImageToTextEarlyStoppingEnum = Literal["never"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToTextGenerationParameters(BaseInferenceType):
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
do_sample: Optional[bool] = None
|
||||
"""Whether to use sampling instead of greedy decoding when generating new tokens."""
|
||||
early_stopping: Optional[Union[bool, "ImageToTextEarlyStoppingEnum"]] = None
|
||||
"""Controls the stopping condition for beam-based methods."""
|
||||
epsilon_cutoff: Optional[float] = None
|
||||
"""If set to float strictly between 0 and 1, only tokens with a conditional probability
|
||||
greater than epsilon_cutoff will be sampled. In the paper, suggested values range from
|
||||
3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language
|
||||
Model Desmoothing](https://hf.co/papers/2210.15191) for more details.
|
||||
"""
|
||||
eta_cutoff: Optional[float] = None
|
||||
"""Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to
|
||||
float strictly between 0 and 1, a token is only considered if it is greater than either
|
||||
eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter
|
||||
term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In
|
||||
the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model.
|
||||
See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191)
|
||||
for more details.
|
||||
"""
|
||||
max_length: Optional[int] = None
|
||||
"""The maximum length (in tokens) of the generated text, including the input."""
|
||||
max_new_tokens: Optional[int] = None
|
||||
"""The maximum number of tokens to generate. Takes precedence over max_length."""
|
||||
min_length: Optional[int] = None
|
||||
"""The minimum length (in tokens) of the generated text, including the input."""
|
||||
min_new_tokens: Optional[int] = None
|
||||
"""The minimum number of tokens to generate. Takes precedence over min_length."""
|
||||
num_beam_groups: Optional[int] = None
|
||||
"""Number of groups to divide num_beams into in order to ensure diversity among different
|
||||
groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details.
|
||||
"""
|
||||
num_beams: Optional[int] = None
|
||||
"""Number of beams to use for beam search."""
|
||||
penalty_alpha: Optional[float] = None
|
||||
"""The value balances the model confidence and the degeneration penalty in contrastive
|
||||
search decoding.
|
||||
"""
|
||||
temperature: Optional[float] = None
|
||||
"""The value used to modulate the next token probabilities."""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
||||
top_p: Optional[float] = None
|
||||
"""If set to float < 1, only the smallest set of most probable tokens with probabilities
|
||||
that add up to top_p or higher are kept for generation.
|
||||
"""
|
||||
typical_p: Optional[float] = None
|
||||
"""Local typicality measures how similar the conditional probability of predicting a target
|
||||
token next is to the expected conditional probability of predicting a random token next,
|
||||
given the partial text already generated. If set to float < 1, the smallest set of the
|
||||
most locally typical tokens with probabilities that add up to typical_p or higher are
|
||||
kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details.
|
||||
"""
|
||||
use_cache: Optional[bool] = None
|
||||
"""Whether the model should use the past last key/values attentions to speed up decoding"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToTextParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Image To Text"""
|
||||
|
||||
max_new_tokens: Optional[int] = None
|
||||
"""The amount of maximum tokens to generate."""
|
||||
# Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers
|
||||
generate_kwargs: Optional[ImageToTextGenerationParameters] = None
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToTextInput(BaseInferenceType):
|
||||
"""Inputs for Image To Text inference"""
|
||||
|
||||
inputs: Any
|
||||
"""The input image data"""
|
||||
parameters: Optional[ImageToTextParameters] = None
|
||||
"""Additional inference parameters for Image To Text"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ImageToTextOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Image To Text task"""
|
||||
|
||||
generated_text: Any
|
||||
image_to_text_output_generated_text: Optional[str] = None
|
||||
"""The generated text."""
|
||||
@@ -0,0 +1,58 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ObjectDetectionParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Object Detection"""
|
||||
|
||||
threshold: Optional[float] = None
|
||||
"""The probability necessary to make a prediction."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ObjectDetectionInput(BaseInferenceType):
|
||||
"""Inputs for Object Detection inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input image data as a base64-encoded string. If no `parameters` are provided, you can
|
||||
also provide the image data as a raw bytes payload.
|
||||
"""
|
||||
parameters: Optional[ObjectDetectionParameters] = None
|
||||
"""Additional inference parameters for Object Detection"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ObjectDetectionBoundingBox(BaseInferenceType):
|
||||
"""The predicted bounding box. Coordinates are relative to the top left corner of the input
|
||||
image.
|
||||
"""
|
||||
|
||||
xmax: int
|
||||
"""The x-coordinate of the bottom-right corner of the bounding box."""
|
||||
xmin: int
|
||||
"""The x-coordinate of the top-left corner of the bounding box."""
|
||||
ymax: int
|
||||
"""The y-coordinate of the bottom-right corner of the bounding box."""
|
||||
ymin: int
|
||||
"""The y-coordinate of the top-left corner of the bounding box."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ObjectDetectionOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Object Detection task"""
|
||||
|
||||
box: ObjectDetectionBoundingBox
|
||||
"""The predicted bounding box. Coordinates are relative to the top left corner of the input
|
||||
image.
|
||||
"""
|
||||
label: str
|
||||
"""The predicted label for the bounding box."""
|
||||
score: float
|
||||
"""The associated score / probability."""
|
||||
@@ -0,0 +1,74 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class QuestionAnsweringInputData(BaseInferenceType):
|
||||
"""One (context, question) pair to answer"""
|
||||
|
||||
context: str
|
||||
"""The context to be used for answering the question"""
|
||||
question: str
|
||||
"""The question to be answered"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class QuestionAnsweringParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Question Answering"""
|
||||
|
||||
align_to_words: Optional[bool] = None
|
||||
"""Attempts to align the answer to real words. Improves quality on space separated
|
||||
languages. Might hurt on non-space-separated languages (like Japanese or Chinese)
|
||||
"""
|
||||
doc_stride: Optional[int] = None
|
||||
"""If the context is too long to fit with the question for the model, it will be split in
|
||||
several chunks with some overlap. This argument controls the size of that overlap.
|
||||
"""
|
||||
handle_impossible_answer: Optional[bool] = None
|
||||
"""Whether to accept impossible as an answer."""
|
||||
max_answer_len: Optional[int] = None
|
||||
"""The maximum length of predicted answers (e.g., only answers with a shorter length are
|
||||
considered).
|
||||
"""
|
||||
max_question_len: Optional[int] = None
|
||||
"""The maximum length of the question after tokenization. It will be truncated if needed."""
|
||||
max_seq_len: Optional[int] = None
|
||||
"""The maximum length of the total sentence (context + question) in tokens of each chunk
|
||||
passed to the model. The context will be split in several chunks (using docStride as
|
||||
overlap) if needed.
|
||||
"""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of answers to return (will be chosen by order of likelihood). Note that we
|
||||
return less than topk answers if there are not enough options available within the
|
||||
context.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class QuestionAnsweringInput(BaseInferenceType):
|
||||
"""Inputs for Question Answering inference"""
|
||||
|
||||
inputs: QuestionAnsweringInputData
|
||||
"""One (context, question) pair to answer"""
|
||||
parameters: Optional[QuestionAnsweringParameters] = None
|
||||
"""Additional inference parameters for Question Answering"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class QuestionAnsweringOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Question Answering task"""
|
||||
|
||||
answer: str
|
||||
"""The answer to the question."""
|
||||
end: int
|
||||
"""The character position in the input where the answer ends."""
|
||||
score: float
|
||||
"""The probability associated to the answer."""
|
||||
start: int
|
||||
"""The character position in the input where the answer begins."""
|
||||
@@ -0,0 +1,27 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class SentenceSimilarityInputData(BaseInferenceType):
|
||||
sentences: List[str]
|
||||
"""A list of strings which will be compared against the source_sentence."""
|
||||
source_sentence: str
|
||||
"""The string that you wish to compare the other strings with. This can be a phrase,
|
||||
sentence, or longer passage, depending on the model being used.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class SentenceSimilarityInput(BaseInferenceType):
|
||||
"""Inputs for Sentence similarity inference"""
|
||||
|
||||
inputs: SentenceSimilarityInputData
|
||||
parameters: Optional[Dict[str, Any]] = None
|
||||
"""Additional inference parameters for Sentence Similarity"""
|
||||
@@ -0,0 +1,41 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
SummarizationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class SummarizationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for summarization."""
|
||||
|
||||
clean_up_tokenization_spaces: Optional[bool] = None
|
||||
"""Whether to clean up the potential extra spaces in the text output."""
|
||||
generate_parameters: Optional[Dict[str, Any]] = None
|
||||
"""Additional parametrization of the text generation algorithm."""
|
||||
truncation: Optional["SummarizationTruncationStrategy"] = None
|
||||
"""The truncation strategy to use."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class SummarizationInput(BaseInferenceType):
|
||||
"""Inputs for Summarization inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text to summarize."""
|
||||
parameters: Optional[SummarizationParameters] = None
|
||||
"""Additional inference parameters for summarization."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class SummarizationOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Summarization task"""
|
||||
|
||||
summary_text: str
|
||||
"""The summarized text."""
|
||||
@@ -0,0 +1,62 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Dict, List, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TableQuestionAnsweringInputData(BaseInferenceType):
|
||||
"""One (table, question) pair to answer"""
|
||||
|
||||
question: str
|
||||
"""The question to be answered about the table"""
|
||||
table: Dict[str, List[str]]
|
||||
"""The table to serve as context for the questions"""
|
||||
|
||||
|
||||
Padding = Literal["do_not_pad", "longest", "max_length"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TableQuestionAnsweringParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Table Question Answering"""
|
||||
|
||||
padding: Optional["Padding"] = None
|
||||
"""Activates and controls padding."""
|
||||
sequential: Optional[bool] = None
|
||||
"""Whether to do inference sequentially or as a batch. Batching is faster, but models like
|
||||
SQA require the inference to be done sequentially to extract relations within sequences,
|
||||
given their conversational nature.
|
||||
"""
|
||||
truncation: Optional[bool] = None
|
||||
"""Activates and controls truncation."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TableQuestionAnsweringInput(BaseInferenceType):
|
||||
"""Inputs for Table Question Answering inference"""
|
||||
|
||||
inputs: TableQuestionAnsweringInputData
|
||||
"""One (table, question) pair to answer"""
|
||||
parameters: Optional[TableQuestionAnsweringParameters] = None
|
||||
"""Additional inference parameters for Table Question Answering"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TableQuestionAnsweringOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Table Question Answering task"""
|
||||
|
||||
answer: str
|
||||
"""The answer of the question given the table. If there is an aggregator, the answer will be
|
||||
preceded by `AGGREGATOR >`.
|
||||
"""
|
||||
cells: List[str]
|
||||
"""List of strings made up of the answer cell values."""
|
||||
coordinates: List[List[int]]
|
||||
"""Coordinates of the cells of the answers."""
|
||||
aggregator: Optional[str] = None
|
||||
"""If the model has an aggregator, this returns the aggregator."""
|
||||
@@ -0,0 +1,42 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
Text2TextGenerationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class Text2TextGenerationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Text2text Generation"""
|
||||
|
||||
clean_up_tokenization_spaces: Optional[bool] = None
|
||||
"""Whether to clean up the potential extra spaces in the text output."""
|
||||
generate_parameters: Optional[Dict[str, Any]] = None
|
||||
"""Additional parametrization of the text generation algorithm"""
|
||||
truncation: Optional["Text2TextGenerationTruncationStrategy"] = None
|
||||
"""The truncation strategy to use"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class Text2TextGenerationInput(BaseInferenceType):
|
||||
"""Inputs for Text2text Generation inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text data"""
|
||||
parameters: Optional[Text2TextGenerationParameters] = None
|
||||
"""Additional inference parameters for Text2text Generation"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class Text2TextGenerationOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Text2text Generation task"""
|
||||
|
||||
generated_text: Any
|
||||
text2_text_generation_output_generated_text: Optional[str] = None
|
||||
"""The generated text."""
|
||||
@@ -0,0 +1,41 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
TextClassificationOutputTransform = Literal["sigmoid", "softmax", "none"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Text Classification"""
|
||||
|
||||
function_to_apply: Optional["TextClassificationOutputTransform"] = None
|
||||
"""The function to apply to the model outputs in order to retrieve the scores."""
|
||||
top_k: Optional[int] = None
|
||||
"""When specified, limits the output to the top K most probable classes."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Text Classification inference"""
|
||||
|
||||
inputs: str
|
||||
"""The text to classify"""
|
||||
parameters: Optional[TextClassificationParameters] = None
|
||||
"""Additional inference parameters for Text Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Text Classification task"""
|
||||
|
||||
label: str
|
||||
"""The predicted class label."""
|
||||
score: float
|
||||
"""The corresponding probability."""
|
||||
@@ -0,0 +1,168 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, List, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
TypeEnum = Literal["json", "regex"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationInputGrammarType(BaseInferenceType):
|
||||
type: "TypeEnum"
|
||||
value: Any
|
||||
"""A string that represents a [JSON Schema](https://json-schema.org/).
|
||||
JSON Schema is a declarative language that allows to annotate JSON documents
|
||||
with types and descriptions.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationInputGenerateParameters(BaseInferenceType):
|
||||
adapter_id: Optional[str] = None
|
||||
"""Lora adapter id"""
|
||||
best_of: Optional[int] = None
|
||||
"""Generate best_of sequences and return the one if the highest token logprobs."""
|
||||
decoder_input_details: Optional[bool] = None
|
||||
"""Whether to return decoder input token logprobs and ids."""
|
||||
details: Optional[bool] = None
|
||||
"""Whether to return generation details."""
|
||||
do_sample: Optional[bool] = None
|
||||
"""Activate logits sampling."""
|
||||
frequency_penalty: Optional[float] = None
|
||||
"""The parameter for frequency penalty. 1.0 means no penalty
|
||||
Penalize new tokens based on their existing frequency in the text so far,
|
||||
decreasing the model's likelihood to repeat the same line verbatim.
|
||||
"""
|
||||
grammar: Optional[TextGenerationInputGrammarType] = None
|
||||
max_new_tokens: Optional[int] = None
|
||||
"""Maximum number of tokens to generate."""
|
||||
repetition_penalty: Optional[float] = None
|
||||
"""The parameter for repetition penalty. 1.0 means no penalty.
|
||||
See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
||||
"""
|
||||
return_full_text: Optional[bool] = None
|
||||
"""Whether to prepend the prompt to the generated text"""
|
||||
seed: Optional[int] = None
|
||||
"""Random sampling seed."""
|
||||
stop: Optional[List[str]] = None
|
||||
"""Stop generating tokens if a member of `stop` is generated."""
|
||||
temperature: Optional[float] = None
|
||||
"""The value used to module the logits distribution."""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
||||
top_n_tokens: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for top-n-filtering."""
|
||||
top_p: Optional[float] = None
|
||||
"""Top-p value for nucleus sampling."""
|
||||
truncate: Optional[int] = None
|
||||
"""Truncate inputs tokens to the given size."""
|
||||
typical_p: Optional[float] = None
|
||||
"""Typical Decoding mass
|
||||
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666)
|
||||
for more information.
|
||||
"""
|
||||
watermark: Optional[bool] = None
|
||||
"""Watermarking with [A Watermark for Large Language
|
||||
Models](https://arxiv.org/abs/2301.10226).
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationInput(BaseInferenceType):
|
||||
"""Text Generation Input.
|
||||
Auto-generated from TGI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
||||
"""
|
||||
|
||||
inputs: str
|
||||
parameters: Optional[TextGenerationInputGenerateParameters] = None
|
||||
stream: Optional[bool] = None
|
||||
|
||||
|
||||
TextGenerationOutputFinishReason = Literal["length", "eos_token", "stop_sequence"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationOutputPrefillToken(BaseInferenceType):
|
||||
id: int
|
||||
logprob: float
|
||||
text: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationOutputToken(BaseInferenceType):
|
||||
id: int
|
||||
logprob: float
|
||||
special: bool
|
||||
text: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationOutputBestOfSequence(BaseInferenceType):
|
||||
finish_reason: "TextGenerationOutputFinishReason"
|
||||
generated_text: str
|
||||
generated_tokens: int
|
||||
prefill: List[TextGenerationOutputPrefillToken]
|
||||
tokens: List[TextGenerationOutputToken]
|
||||
seed: Optional[int] = None
|
||||
top_tokens: Optional[List[List[TextGenerationOutputToken]]] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationOutputDetails(BaseInferenceType):
|
||||
finish_reason: "TextGenerationOutputFinishReason"
|
||||
generated_tokens: int
|
||||
prefill: List[TextGenerationOutputPrefillToken]
|
||||
tokens: List[TextGenerationOutputToken]
|
||||
best_of_sequences: Optional[List[TextGenerationOutputBestOfSequence]] = None
|
||||
seed: Optional[int] = None
|
||||
top_tokens: Optional[List[List[TextGenerationOutputToken]]] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationOutput(BaseInferenceType):
|
||||
"""Text Generation Output.
|
||||
Auto-generated from TGI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
||||
"""
|
||||
|
||||
generated_text: str
|
||||
details: Optional[TextGenerationOutputDetails] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationStreamOutputStreamDetails(BaseInferenceType):
|
||||
finish_reason: "TextGenerationOutputFinishReason"
|
||||
generated_tokens: int
|
||||
input_length: int
|
||||
seed: Optional[int] = None
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationStreamOutputToken(BaseInferenceType):
|
||||
id: int
|
||||
logprob: float
|
||||
special: bool
|
||||
text: str
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextGenerationStreamOutput(BaseInferenceType):
|
||||
"""Text Generation Stream Output.
|
||||
Auto-generated from TGI specs.
|
||||
For more details, check out
|
||||
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
||||
"""
|
||||
|
||||
index: int
|
||||
token: TextGenerationStreamOutputToken
|
||||
details: Optional[TextGenerationStreamOutputStreamDetails] = None
|
||||
generated_text: Optional[str] = None
|
||||
top_tokens: Optional[List[TextGenerationStreamOutputToken]] = None
|
||||
@@ -0,0 +1,100 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
TextToAudioEarlyStoppingEnum = Literal["never"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToAudioGenerationParameters(BaseInferenceType):
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
do_sample: Optional[bool] = None
|
||||
"""Whether to use sampling instead of greedy decoding when generating new tokens."""
|
||||
early_stopping: Optional[Union[bool, "TextToAudioEarlyStoppingEnum"]] = None
|
||||
"""Controls the stopping condition for beam-based methods."""
|
||||
epsilon_cutoff: Optional[float] = None
|
||||
"""If set to float strictly between 0 and 1, only tokens with a conditional probability
|
||||
greater than epsilon_cutoff will be sampled. In the paper, suggested values range from
|
||||
3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language
|
||||
Model Desmoothing](https://hf.co/papers/2210.15191) for more details.
|
||||
"""
|
||||
eta_cutoff: Optional[float] = None
|
||||
"""Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to
|
||||
float strictly between 0 and 1, a token is only considered if it is greater than either
|
||||
eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter
|
||||
term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In
|
||||
the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model.
|
||||
See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191)
|
||||
for more details.
|
||||
"""
|
||||
max_length: Optional[int] = None
|
||||
"""The maximum length (in tokens) of the generated text, including the input."""
|
||||
max_new_tokens: Optional[int] = None
|
||||
"""The maximum number of tokens to generate. Takes precedence over max_length."""
|
||||
min_length: Optional[int] = None
|
||||
"""The minimum length (in tokens) of the generated text, including the input."""
|
||||
min_new_tokens: Optional[int] = None
|
||||
"""The minimum number of tokens to generate. Takes precedence over min_length."""
|
||||
num_beam_groups: Optional[int] = None
|
||||
"""Number of groups to divide num_beams into in order to ensure diversity among different
|
||||
groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details.
|
||||
"""
|
||||
num_beams: Optional[int] = None
|
||||
"""Number of beams to use for beam search."""
|
||||
penalty_alpha: Optional[float] = None
|
||||
"""The value balances the model confidence and the degeneration penalty in contrastive
|
||||
search decoding.
|
||||
"""
|
||||
temperature: Optional[float] = None
|
||||
"""The value used to modulate the next token probabilities."""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
||||
top_p: Optional[float] = None
|
||||
"""If set to float < 1, only the smallest set of most probable tokens with probabilities
|
||||
that add up to top_p or higher are kept for generation.
|
||||
"""
|
||||
typical_p: Optional[float] = None
|
||||
"""Local typicality measures how similar the conditional probability of predicting a target
|
||||
token next is to the expected conditional probability of predicting a random token next,
|
||||
given the partial text already generated. If set to float < 1, the smallest set of the
|
||||
most locally typical tokens with probabilities that add up to typical_p or higher are
|
||||
kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details.
|
||||
"""
|
||||
use_cache: Optional[bool] = None
|
||||
"""Whether the model should use the past last key/values attentions to speed up decoding"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToAudioParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Text To Audio"""
|
||||
|
||||
# Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers
|
||||
generate_kwargs: Optional[TextToAudioGenerationParameters] = None
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToAudioInput(BaseInferenceType):
|
||||
"""Inputs for Text To Audio inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text data"""
|
||||
parameters: Optional[TextToAudioParameters] = None
|
||||
"""Additional inference parameters for Text To Audio"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToAudioOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Text To Audio task"""
|
||||
|
||||
audio: Any
|
||||
"""The generated audio waveform."""
|
||||
sampling_rate: float
|
||||
"""The sampling rate of the generated audio waveform."""
|
||||
@@ -0,0 +1,50 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToImageParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Text To Image"""
|
||||
|
||||
guidance_scale: Optional[float] = None
|
||||
"""A higher guidance scale value encourages the model to generate images closely linked to
|
||||
the text prompt, but values too high may cause saturation and other artifacts.
|
||||
"""
|
||||
height: Optional[int] = None
|
||||
"""The height in pixels of the output image"""
|
||||
negative_prompt: Optional[str] = None
|
||||
"""One prompt to guide what NOT to include in image generation."""
|
||||
num_inference_steps: Optional[int] = None
|
||||
"""The number of denoising steps. More denoising steps usually lead to a higher quality
|
||||
image at the expense of slower inference.
|
||||
"""
|
||||
scheduler: Optional[str] = None
|
||||
"""Override the scheduler with a compatible one."""
|
||||
seed: Optional[int] = None
|
||||
"""Seed for the random number generator."""
|
||||
width: Optional[int] = None
|
||||
"""The width in pixels of the output image"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToImageInput(BaseInferenceType):
|
||||
"""Inputs for Text To Image inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text data (sometimes called "prompt")"""
|
||||
parameters: Optional[TextToImageParameters] = None
|
||||
"""Additional inference parameters for Text To Image"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToImageOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Text To Image task"""
|
||||
|
||||
image: Any
|
||||
"""The generated image returned as raw bytes in the payload."""
|
||||
@@ -0,0 +1,100 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Literal, Optional, Union
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
TextToSpeechEarlyStoppingEnum = Literal["never"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToSpeechGenerationParameters(BaseInferenceType):
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
do_sample: Optional[bool] = None
|
||||
"""Whether to use sampling instead of greedy decoding when generating new tokens."""
|
||||
early_stopping: Optional[Union[bool, "TextToSpeechEarlyStoppingEnum"]] = None
|
||||
"""Controls the stopping condition for beam-based methods."""
|
||||
epsilon_cutoff: Optional[float] = None
|
||||
"""If set to float strictly between 0 and 1, only tokens with a conditional probability
|
||||
greater than epsilon_cutoff will be sampled. In the paper, suggested values range from
|
||||
3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language
|
||||
Model Desmoothing](https://hf.co/papers/2210.15191) for more details.
|
||||
"""
|
||||
eta_cutoff: Optional[float] = None
|
||||
"""Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to
|
||||
float strictly between 0 and 1, a token is only considered if it is greater than either
|
||||
eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter
|
||||
term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In
|
||||
the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model.
|
||||
See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191)
|
||||
for more details.
|
||||
"""
|
||||
max_length: Optional[int] = None
|
||||
"""The maximum length (in tokens) of the generated text, including the input."""
|
||||
max_new_tokens: Optional[int] = None
|
||||
"""The maximum number of tokens to generate. Takes precedence over max_length."""
|
||||
min_length: Optional[int] = None
|
||||
"""The minimum length (in tokens) of the generated text, including the input."""
|
||||
min_new_tokens: Optional[int] = None
|
||||
"""The minimum number of tokens to generate. Takes precedence over min_length."""
|
||||
num_beam_groups: Optional[int] = None
|
||||
"""Number of groups to divide num_beams into in order to ensure diversity among different
|
||||
groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details.
|
||||
"""
|
||||
num_beams: Optional[int] = None
|
||||
"""Number of beams to use for beam search."""
|
||||
penalty_alpha: Optional[float] = None
|
||||
"""The value balances the model confidence and the degeneration penalty in contrastive
|
||||
search decoding.
|
||||
"""
|
||||
temperature: Optional[float] = None
|
||||
"""The value used to modulate the next token probabilities."""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
||||
top_p: Optional[float] = None
|
||||
"""If set to float < 1, only the smallest set of most probable tokens with probabilities
|
||||
that add up to top_p or higher are kept for generation.
|
||||
"""
|
||||
typical_p: Optional[float] = None
|
||||
"""Local typicality measures how similar the conditional probability of predicting a target
|
||||
token next is to the expected conditional probability of predicting a random token next,
|
||||
given the partial text already generated. If set to float < 1, the smallest set of the
|
||||
most locally typical tokens with probabilities that add up to typical_p or higher are
|
||||
kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details.
|
||||
"""
|
||||
use_cache: Optional[bool] = None
|
||||
"""Whether the model should use the past last key/values attentions to speed up decoding"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToSpeechParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Text To Speech"""
|
||||
|
||||
# Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers
|
||||
generate_kwargs: Optional[TextToSpeechGenerationParameters] = None
|
||||
"""Parametrization of the text generation process"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToSpeechInput(BaseInferenceType):
|
||||
"""Inputs for Text To Speech inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text data"""
|
||||
parameters: Optional[TextToSpeechParameters] = None
|
||||
"""Additional inference parameters for Text To Speech"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToSpeechOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Text To Speech task"""
|
||||
|
||||
audio: Any
|
||||
"""The generated audio"""
|
||||
sampling_rate: Optional[float] = None
|
||||
"""The sampling rate of the generated audio waveform."""
|
||||
@@ -0,0 +1,46 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToVideoParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Text To Video"""
|
||||
|
||||
guidance_scale: Optional[float] = None
|
||||
"""A higher guidance scale value encourages the model to generate videos closely linked to
|
||||
the text prompt, but values too high may cause saturation and other artifacts.
|
||||
"""
|
||||
negative_prompt: Optional[List[str]] = None
|
||||
"""One or several prompt to guide what NOT to include in video generation."""
|
||||
num_frames: Optional[float] = None
|
||||
"""The num_frames parameter determines how many video frames are generated."""
|
||||
num_inference_steps: Optional[int] = None
|
||||
"""The number of denoising steps. More denoising steps usually lead to a higher quality
|
||||
video at the expense of slower inference.
|
||||
"""
|
||||
seed: Optional[int] = None
|
||||
"""Seed for the random number generator."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToVideoInput(BaseInferenceType):
|
||||
"""Inputs for Text To Video inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text data (sometimes called "prompt")"""
|
||||
parameters: Optional[TextToVideoParameters] = None
|
||||
"""Additional inference parameters for Text To Video"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TextToVideoOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Text To Video task"""
|
||||
|
||||
video: Any
|
||||
"""The generated video returned as raw bytes in the payload."""
|
||||
@@ -0,0 +1,51 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import List, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
TokenClassificationAggregationStrategy = Literal["none", "simple", "first", "average", "max"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TokenClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Token Classification"""
|
||||
|
||||
aggregation_strategy: Optional["TokenClassificationAggregationStrategy"] = None
|
||||
"""The strategy used to fuse tokens based on model predictions"""
|
||||
ignore_labels: Optional[List[str]] = None
|
||||
"""A list of labels to ignore"""
|
||||
stride: Optional[int] = None
|
||||
"""The number of overlapping tokens between chunks when splitting the input text."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TokenClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Token Classification inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input text data"""
|
||||
parameters: Optional[TokenClassificationParameters] = None
|
||||
"""Additional inference parameters for Token Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TokenClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Token Classification task"""
|
||||
|
||||
end: int
|
||||
"""The character position in the input where this group ends."""
|
||||
score: float
|
||||
"""The associated score / probability"""
|
||||
start: int
|
||||
"""The character position in the input where this group begins."""
|
||||
word: str
|
||||
"""The corresponding text"""
|
||||
entity: Optional[str] = None
|
||||
"""The predicted label for a single token"""
|
||||
entity_group: Optional[str] = None
|
||||
"""The predicted label for a group of one or more tokens"""
|
||||
@@ -0,0 +1,49 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
TranslationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TranslationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Translation"""
|
||||
|
||||
clean_up_tokenization_spaces: Optional[bool] = None
|
||||
"""Whether to clean up the potential extra spaces in the text output."""
|
||||
generate_parameters: Optional[Dict[str, Any]] = None
|
||||
"""Additional parametrization of the text generation algorithm."""
|
||||
src_lang: Optional[str] = None
|
||||
"""The source language of the text. Required for models that can translate from multiple
|
||||
languages.
|
||||
"""
|
||||
tgt_lang: Optional[str] = None
|
||||
"""Target language to translate to. Required for models that can translate to multiple
|
||||
languages.
|
||||
"""
|
||||
truncation: Optional["TranslationTruncationStrategy"] = None
|
||||
"""The truncation strategy to use."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TranslationInput(BaseInferenceType):
|
||||
"""Inputs for Translation inference"""
|
||||
|
||||
inputs: str
|
||||
"""The text to translate."""
|
||||
parameters: Optional[TranslationParameters] = None
|
||||
"""Additional inference parameters for Translation"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class TranslationOutput(BaseInferenceType):
|
||||
"""Outputs of inference for the Translation task"""
|
||||
|
||||
translation_text: str
|
||||
"""The translated text."""
|
||||
@@ -0,0 +1,45 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
VideoClassificationOutputTransform = Literal["sigmoid", "softmax", "none"]
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VideoClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Video Classification"""
|
||||
|
||||
frame_sampling_rate: Optional[int] = None
|
||||
"""The sampling rate used to select frames from the video."""
|
||||
function_to_apply: Optional["VideoClassificationOutputTransform"] = None
|
||||
"""The function to apply to the model outputs in order to retrieve the scores."""
|
||||
num_frames: Optional[int] = None
|
||||
"""The number of sampled frames to consider for classification."""
|
||||
top_k: Optional[int] = None
|
||||
"""When specified, limits the output to the top K most probable classes."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VideoClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Video Classification inference"""
|
||||
|
||||
inputs: Any
|
||||
"""The input video data"""
|
||||
parameters: Optional[VideoClassificationParameters] = None
|
||||
"""Additional inference parameters for Video Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VideoClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Video Classification task"""
|
||||
|
||||
label: str
|
||||
"""The predicted class label."""
|
||||
score: float
|
||||
"""The corresponding probability."""
|
||||
@@ -0,0 +1,49 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import Any, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VisualQuestionAnsweringInputData(BaseInferenceType):
|
||||
"""One (image, question) pair to answer"""
|
||||
|
||||
image: Any
|
||||
"""The image."""
|
||||
question: str
|
||||
"""The question to answer based on the image."""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VisualQuestionAnsweringParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Visual Question Answering"""
|
||||
|
||||
top_k: Optional[int] = None
|
||||
"""The number of answers to return (will be chosen by order of likelihood). Note that we
|
||||
return less than topk answers if there are not enough options available within the
|
||||
context.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VisualQuestionAnsweringInput(BaseInferenceType):
|
||||
"""Inputs for Visual Question Answering inference"""
|
||||
|
||||
inputs: VisualQuestionAnsweringInputData
|
||||
"""One (image, question) pair to answer"""
|
||||
parameters: Optional[VisualQuestionAnsweringParameters] = None
|
||||
"""Additional inference parameters for Visual Question Answering"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class VisualQuestionAnsweringOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Visual Question Answering task"""
|
||||
|
||||
score: float
|
||||
"""The associated score / probability"""
|
||||
answer: Optional[str] = None
|
||||
"""The answer to the question"""
|
||||
@@ -0,0 +1,45 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import List, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Zero Shot Classification"""
|
||||
|
||||
candidate_labels: List[str]
|
||||
"""The set of possible class labels to classify the text into."""
|
||||
hypothesis_template: Optional[str] = None
|
||||
"""The sentence used in conjunction with `candidate_labels` to attempt the text
|
||||
classification by replacing the placeholder with the candidate labels.
|
||||
"""
|
||||
multi_label: Optional[bool] = None
|
||||
"""Whether multiple candidate labels can be true. If false, the scores are normalized such
|
||||
that the sum of the label likelihoods for each sequence is 1. If true, the labels are
|
||||
considered independent and probabilities are normalized for each candidate.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Zero Shot Classification inference"""
|
||||
|
||||
inputs: str
|
||||
"""The text to classify"""
|
||||
parameters: ZeroShotClassificationParameters
|
||||
"""Additional inference parameters for Zero Shot Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Zero Shot Classification task"""
|
||||
|
||||
label: str
|
||||
"""The predicted class label."""
|
||||
score: float
|
||||
"""The corresponding probability."""
|
||||
@@ -0,0 +1,40 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import List, Optional
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotImageClassificationParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Zero Shot Image Classification"""
|
||||
|
||||
candidate_labels: List[str]
|
||||
"""The candidate labels for this image"""
|
||||
hypothesis_template: Optional[str] = None
|
||||
"""The sentence used in conjunction with `candidate_labels` to attempt the image
|
||||
classification by replacing the placeholder with the candidate labels.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotImageClassificationInput(BaseInferenceType):
|
||||
"""Inputs for Zero Shot Image Classification inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input image data to classify as a base64-encoded string."""
|
||||
parameters: ZeroShotImageClassificationParameters
|
||||
"""Additional inference parameters for Zero Shot Image Classification"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotImageClassificationOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Zero Shot Image Classification task"""
|
||||
|
||||
label: str
|
||||
"""The predicted class label."""
|
||||
score: float
|
||||
"""The corresponding probability."""
|
||||
@@ -0,0 +1,52 @@
|
||||
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
||||
#
|
||||
# See:
|
||||
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
||||
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
||||
from typing import List
|
||||
|
||||
from .base import BaseInferenceType, dataclass_with_extra
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotObjectDetectionParameters(BaseInferenceType):
|
||||
"""Additional inference parameters for Zero Shot Object Detection"""
|
||||
|
||||
candidate_labels: List[str]
|
||||
"""The candidate labels for this image"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotObjectDetectionInput(BaseInferenceType):
|
||||
"""Inputs for Zero Shot Object Detection inference"""
|
||||
|
||||
inputs: str
|
||||
"""The input image data as a base64-encoded string."""
|
||||
parameters: ZeroShotObjectDetectionParameters
|
||||
"""Additional inference parameters for Zero Shot Object Detection"""
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotObjectDetectionBoundingBox(BaseInferenceType):
|
||||
"""The predicted bounding box. Coordinates are relative to the top left corner of the input
|
||||
image.
|
||||
"""
|
||||
|
||||
xmax: int
|
||||
xmin: int
|
||||
ymax: int
|
||||
ymin: int
|
||||
|
||||
|
||||
@dataclass_with_extra
|
||||
class ZeroShotObjectDetectionOutputElement(BaseInferenceType):
|
||||
"""Outputs of inference for the Zero Shot Object Detection task"""
|
||||
|
||||
box: ZeroShotObjectDetectionBoundingBox
|
||||
"""The predicted bounding box. Coordinates are relative to the top left corner of the input
|
||||
image.
|
||||
"""
|
||||
label: str
|
||||
"""A candidate label"""
|
||||
score: float
|
||||
"""The associated score / probability"""
|
||||
Reference in New Issue
Block a user