structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,35 @@
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform.datasets.dataset import _Dataset
from google.cloud.aiplatform.datasets.column_names_dataset import _ColumnNamesDataset
from google.cloud.aiplatform.datasets.tabular_dataset import TabularDataset
from google.cloud.aiplatform.datasets.time_series_dataset import TimeSeriesDataset
from google.cloud.aiplatform.datasets.image_dataset import ImageDataset
from google.cloud.aiplatform.datasets.text_dataset import TextDataset
from google.cloud.aiplatform.datasets.video_dataset import VideoDataset
__all__ = (
"_Dataset",
"_ColumnNamesDataset",
"TabularDataset",
"TimeSeriesDataset",
"ImageDataset",
"TextDataset",
"VideoDataset",
)

View File

@@ -0,0 +1,240 @@
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import abc
from typing import Optional, Dict, Sequence, Union
from google.cloud.aiplatform import schema
from google.cloud.aiplatform.compat.types import (
io as gca_io,
dataset as gca_dataset,
)
class Datasource(abc.ABC):
"""An abstract class that sets dataset_metadata."""
@property
@abc.abstractmethod
def dataset_metadata(self):
"""Dataset Metadata."""
pass
class DatasourceImportable(abc.ABC):
"""An abstract class that sets import_data_config."""
@property
@abc.abstractmethod
def import_data_config(self):
"""Import Data Config."""
pass
class TabularDatasource(Datasource):
"""Datasource for creating a tabular dataset for Vertex AI."""
def __init__(
self,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
bq_source: Optional[str] = None,
):
"""Creates a tabular datasource.
Args:
gcs_source (Union[str, Sequence[str]]):
Cloud Storage URI of one or more files. Only CSV files are supported.
The first line of the CSV file is used as the header.
If there are multiple files, the header is the first line of
the lexicographically first file, the other files must either
contain the exact same header or omit the header.
examples:
str: "gs://bucket/file.csv"
Sequence[str]: ["gs://bucket/file1.csv", "gs://bucket/file2.csv"]
bq_source (str):
The URI of a BigQuery table.
example:
"bq://project.dataset.table_name"
Raises:
ValueError: If source configuration is not valid.
"""
dataset_metadata = None
if gcs_source and isinstance(gcs_source, str):
gcs_source = [gcs_source]
if gcs_source and bq_source:
raise ValueError("Only one of gcs_source or bq_source can be set.")
if not any([gcs_source, bq_source]):
raise ValueError("One of gcs_source or bq_source must be set.")
if gcs_source:
dataset_metadata = {"inputConfig": {"gcsSource": {"uri": gcs_source}}}
elif bq_source:
dataset_metadata = {"inputConfig": {"bigquerySource": {"uri": bq_source}}}
self._dataset_metadata = dataset_metadata
@property
def dataset_metadata(self) -> Optional[Dict]:
"""Dataset Metadata."""
return self._dataset_metadata
class NonTabularDatasource(Datasource):
"""Datasource for creating an empty non-tabular dataset for Vertex AI."""
@property
def dataset_metadata(self) -> Optional[Dict]:
return None
class NonTabularDatasourceImportable(NonTabularDatasource, DatasourceImportable):
"""Datasource for creating a non-tabular dataset for Vertex AI and
importing data to the dataset."""
def __init__(
self,
gcs_source: Union[str, Sequence[str]],
import_schema_uri: str,
data_item_labels: Optional[Dict] = None,
):
"""Creates a non-tabular datasource.
Args:
gcs_source (Union[str, Sequence[str]]):
Required. The Google Cloud Storage location for the input content.
Google Cloud Storage URI(-s) to the input file(s).
Examples:
str: "gs://bucket/file.csv"
Sequence[str]: ["gs://bucket/file1.csv", "gs://bucket/file2.csv"]
import_schema_uri (str):
Required. Points to a YAML file stored on Google Cloud
Storage describing the import format. Validation will be
done against the schema. The schema is defined as an
`OpenAPI 3.0.2 Schema
data_item_labels (Dict):
Labels that will be applied to newly imported DataItems. If
an identical DataItem as one being imported already exists
in the Dataset, then these labels will be appended to these
of the already existing one, and if labels with identical
key is imported before, the old label value will be
overwritten. If two DataItems are identical in the same
import data operation, the labels will be combined and if
key collision happens in this case, one of the values will
be picked randomly. Two DataItems are considered identical
if their content bytes are identical (e.g. image bytes or
pdf bytes). These labels will be overridden by Annotation
labels specified inside index file refenced by
``import_schema_uri``,
e.g. jsonl file.
"""
super().__init__()
self._gcs_source = [gcs_source] if isinstance(gcs_source, str) else gcs_source
self._import_schema_uri = import_schema_uri
self._data_item_labels = data_item_labels
@property
def import_data_config(self) -> gca_dataset.ImportDataConfig:
"""Import Data Config."""
return gca_dataset.ImportDataConfig(
gcs_source=gca_io.GcsSource(uris=self._gcs_source),
import_schema_uri=self._import_schema_uri,
data_item_labels=self._data_item_labels,
)
def create_datasource(
metadata_schema_uri: str,
import_schema_uri: Optional[str] = None,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
bq_source: Optional[str] = None,
data_item_labels: Optional[Dict] = None,
) -> Datasource:
"""Creates a datasource
Args:
metadata_schema_uri (str):
Required. Points to a YAML file stored on Google Cloud Storage
describing additional information about the Dataset. The schema
is defined as an OpenAPI 3.0.2 Schema Object. The schema files
that can be used here are found in gs://google-cloud-
aiplatform/schema/dataset/metadata/.
import_schema_uri (str):
Points to a YAML file stored on Google Cloud
Storage describing the import format. Validation will be
done against the schema. The schema is defined as an
`OpenAPI 3.0.2 Schema
gcs_source (Union[str, Sequence[str]]):
The Google Cloud Storage location for the input content.
Google Cloud Storage URI(-s) to the input file(s).
Examples:
str: "gs://bucket/file.csv"
Sequence[str]: ["gs://bucket/file1.csv", "gs://bucket/file2.csv"]
bq_source (str):
BigQuery URI to the input table.
example:
"bq://project.dataset.table_name"
data_item_labels (Dict):
Labels that will be applied to newly imported DataItems. If
an identical DataItem as one being imported already exists
in the Dataset, then these labels will be appended to these
of the already existing one, and if labels with identical
key is imported before, the old label value will be
overwritten. If two DataItems are identical in the same
import data operation, the labels will be combined and if
key collision happens in this case, one of the values will
be picked randomly. Two DataItems are considered identical
if their content bytes are identical (e.g. image bytes or
pdf bytes). These labels will be overridden by Annotation
labels specified inside index file refenced by
``import_schema_uri``,
e.g. jsonl file.
Returns:
datasource (Datasource)
Raises:
ValueError: When below scenarios happen:
- import_schema_uri is identified for creating TabularDatasource
- either import_schema_uri or gcs_source is missing for creating NonTabularDatasourceImportable
"""
if metadata_schema_uri == schema.dataset.metadata.tabular:
if import_schema_uri:
raise ValueError("tabular dataset does not support data import.")
return TabularDatasource(gcs_source, bq_source)
if metadata_schema_uri == schema.dataset.metadata.time_series:
if import_schema_uri:
raise ValueError("time series dataset does not support data import.")
return TabularDatasource(gcs_source, bq_source)
if not import_schema_uri and not gcs_source:
return NonTabularDatasource()
elif import_schema_uri and gcs_source:
return NonTabularDatasourceImportable(
gcs_source, import_schema_uri, data_item_labels
)
else:
raise ValueError(
"nontabular dataset requires both import_schema_uri and gcs_source for data import."
)

View File

@@ -0,0 +1,261 @@
# -*- coding: utf-8 -*-
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import csv
import logging
from typing import List, Optional, Set, TYPE_CHECKING
from google.auth import credentials as auth_credentials
from google.cloud import storage
from google.cloud.aiplatform import utils
from google.cloud.aiplatform import datasets
if TYPE_CHECKING:
from google.cloud import bigquery
class _ColumnNamesDataset(datasets._Dataset):
@property
def column_names(self) -> List[str]:
"""Retrieve the columns for the dataset by extracting it from the Google Cloud Storage or
Google BigQuery source.
Returns:
List[str]
A list of columns names
Raises:
RuntimeError: When no valid source is found.
"""
self._assert_gca_resource_is_available()
metadata = self._gca_resource.metadata
if metadata is None:
raise RuntimeError("No metadata found for dataset")
input_config = metadata.get("inputConfig")
if input_config is None:
raise RuntimeError("No inputConfig found for dataset")
gcs_source = input_config.get("gcsSource")
bq_source = input_config.get("bigquerySource")
if gcs_source:
gcs_source_uris = gcs_source.get("uri")
if gcs_source_uris and len(gcs_source_uris) > 0:
# Lexicographically sort the files
gcs_source_uris.sort()
# Get the first file in sorted list
# TODO(b/193044977): Return as Set instead of List
return list(
self._retrieve_gcs_source_columns(
project=self.project,
gcs_csv_file_path=gcs_source_uris[0],
credentials=self.credentials,
)
)
elif bq_source:
bq_table_uri = bq_source.get("uri")
if bq_table_uri:
# TODO(b/193044977): Return as Set instead of List
return list(
self._retrieve_bq_source_columns(
project=self.project,
bq_table_uri=bq_table_uri,
credentials=self.credentials,
)
)
raise RuntimeError("No valid CSV or BigQuery datasource found.")
@staticmethod
def _retrieve_gcs_source_columns(
project: str,
gcs_csv_file_path: str,
credentials: Optional[auth_credentials.Credentials] = None,
) -> Set[str]:
"""Retrieve the columns from a comma-delimited CSV file stored on Google Cloud Storage
Example Usage:
column_names = _retrieve_gcs_source_columns(
"project_id",
"gs://example-bucket/path/to/csv_file"
)
# column_names = {"column_1", "column_2"}
Args:
project (str):
Required. Project to initiate the Google Cloud Storage client with.
gcs_csv_file_path (str):
Required. A full path to a CSV files stored on Google Cloud Storage.
Must include "gs://" prefix.
credentials (auth_credentials.Credentials):
Credentials to use to with GCS Client.
Returns:
Set[str]
A set of columns names in the CSV file.
Raises:
RuntimeError: When the retrieved CSV file is invalid.
"""
gcs_bucket, gcs_blob = utils.extract_bucket_and_prefix_from_gcs_path(
gcs_csv_file_path
)
client = storage.Client(project=project, credentials=credentials)
bucket = client.bucket(gcs_bucket)
blob = bucket.blob(gcs_blob)
# Incrementally download the CSV file until the header is retrieved
first_new_line_index = -1
start_index = 0
increment = 1000
line = ""
try:
logger = logging.getLogger("google.resumable_media._helpers")
logging_warning_filter = utils.LoggingFilter(logging.INFO)
logger.addFilter(logging_warning_filter)
while first_new_line_index == -1:
line += blob.download_as_bytes(
start=start_index, end=start_index + increment - 1
).decode("utf-8")
first_new_line_index = line.find("\n")
start_index += increment
header_line = line[:first_new_line_index]
# Split to make it an iterable
header_line = header_line.split("\n")[:1]
csv_reader = csv.reader(header_line, delimiter=",")
except (ValueError, RuntimeError) as err:
raise RuntimeError(
"There was a problem extracting the headers from the CSV file at '{}': {}".format(
gcs_csv_file_path, err
)
) from err
finally:
logger.removeFilter(logging_warning_filter)
return set(next(csv_reader))
@staticmethod
def _get_bq_schema_field_names_recursively(
schema_field: "bigquery.SchemaField",
) -> Set[str]:
"""Retrieve the name for a schema field along with ancestor fields.
Nested schema fields are flattened and concatenated with a ".".
Schema fields with child fields are not included, but the children are.
Args:
project (str):
Required. Project to initiate the BigQuery client with.
bq_table_uri (str):
Required. A URI to a BigQuery table.
Can include "bq://" prefix but not required.
credentials (auth_credentials.Credentials):
Credentials to use with BQ Client.
Returns:
Set[str]
A set of columns names in the BigQuery table.
"""
ancestor_names = {
nested_field_name
for field in schema_field.fields
for nested_field_name in _ColumnNamesDataset._get_bq_schema_field_names_recursively(
field
)
}
# Only return "leaf nodes", basically any field that doesn't have children
if len(ancestor_names) == 0:
return {schema_field.name}
else:
return {f"{schema_field.name}.{name}" for name in ancestor_names}
@staticmethod
def _retrieve_bq_source_columns(
project: str,
bq_table_uri: str,
credentials: Optional[auth_credentials.Credentials] = None,
) -> Set[str]:
"""Retrieve the column names from a table on Google BigQuery
Nested schema fields are flattened and concatenated with a ".".
Schema fields with child fields are not included, but the children are.
Example Usage:
column_names = _retrieve_bq_source_columns(
"project_id",
"bq://project_id.dataset.table"
)
# column_names = {"column_1", "column_2", "column_3.nested_field"}
Args:
project (str):
Required. Project to initiate the BigQuery client with.
bq_table_uri (str):
Required. A URI to a BigQuery table.
Can include "bq://" prefix but not required.
credentials (auth_credentials.Credentials):
Credentials to use with BQ Client.
Returns:
Set[str]
A set of column names in the BigQuery table.
"""
# Remove bq:// prefix
prefix = "bq://"
if bq_table_uri.startswith(prefix):
bq_table_uri = bq_table_uri[len(prefix) :]
# The colon-based "project:dataset.table" format is no longer supported:
# Invalid dataset ID "bigquery-public-data:chicago_taxi_trips".
# Dataset IDs must be alphanumeric (plus underscores and dashes) and must be at most 1024 characters long.
# Using dot-based "project.dataset.table" format instead.
bq_table_uri = bq_table_uri.replace(":", ".")
# Loading bigquery lazily to avoid auto-loading it when importing vertexai
from google.cloud import bigquery # pylint: disable=g-import-not-at-top
client = bigquery.Client(project=project, credentials=credentials)
table = client.get_table(bq_table_uri)
schema = table.schema
return {
field_name
for field in schema
for field_name in _ColumnNamesDataset._get_bq_schema_field_names_recursively(
field
)
}

View File

@@ -0,0 +1,927 @@
# -*- coding: utf-8 -*-
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from google.api_core import operation
from google.auth import credentials as auth_credentials
from google.cloud.aiplatform import base
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import utils
from google.cloud.aiplatform.compat.services import dataset_service_client
from google.cloud.aiplatform.compat.types import (
dataset as gca_dataset,
dataset_service as gca_dataset_service,
encryption_spec as gca_encryption_spec,
io as gca_io,
)
from google.cloud.aiplatform.datasets import _datasources
from google.protobuf import field_mask_pb2
from google.protobuf import json_format
_LOGGER = base.Logger(__name__)
class _Dataset(base.VertexAiResourceNounWithFutureManager):
"""Managed dataset resource for Vertex AI."""
client_class = utils.DatasetClientWithOverride
_resource_noun = "datasets"
_getter_method = "get_dataset"
_list_method = "list_datasets"
_delete_method = "delete_dataset"
_parse_resource_name_method = "parse_dataset_path"
_format_resource_name_method = "dataset_path"
_supported_metadata_schema_uris: Tuple[str] = ()
def __init__(
self,
dataset_name: str,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
):
"""Retrieves an existing managed dataset given a dataset name or ID.
Args:
dataset_name (str):
Required. A fully-qualified dataset resource name or dataset ID.
Example: "projects/123/locations/us-central1/datasets/456" or
"456" when project and location are initialized or passed.
project (str):
Optional project to retrieve dataset from. If not set, project
set in aiplatform.init will be used.
location (str):
Optional location to retrieve dataset from. If not set, location
set in aiplatform.init will be used.
credentials (auth_credentials.Credentials):
Custom credentials to use to retrieve this Dataset. Overrides
credentials set in aiplatform.init.
"""
super().__init__(
project=project,
location=location,
credentials=credentials,
resource_name=dataset_name,
)
self._gca_resource = self._get_gca_resource(resource_name=dataset_name)
self._validate_metadata_schema_uri()
@property
def metadata_schema_uri(self) -> str:
"""The metadata schema uri of this dataset resource."""
self._assert_gca_resource_is_available()
return self._gca_resource.metadata_schema_uri
def _validate_metadata_schema_uri(self) -> None:
"""Validate the metadata_schema_uri of retrieved dataset resource.
Raises:
ValueError: If the dataset type of the retrieved dataset resource is
not supported by the class.
"""
if self._supported_metadata_schema_uris and (
self.metadata_schema_uri not in self._supported_metadata_schema_uris
):
raise ValueError(
f"{self.__class__.__name__} class can not be used to retrieve "
f"dataset resource {self.resource_name}, check the dataset type"
)
@classmethod
def create(
cls,
# TODO(b/223262536): Make the display_name parameter optional in the next major release
display_name: str,
metadata_schema_uri: str,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
bq_source: Optional[str] = None,
import_schema_uri: Optional[str] = None,
data_item_labels: Optional[Dict] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec_key_name: Optional[str] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
) -> "_Dataset":
"""Creates a new dataset and optionally imports data into dataset when
source and import_schema_uri are passed.
Args:
display_name (str):
Required. The user-defined name of the Dataset.
The name can be up to 128 characters long and can be consist
of any UTF-8 characters.
metadata_schema_uri (str):
Required. Points to a YAML file stored on Google Cloud Storage
describing additional information about the Dataset. The schema
is defined as an OpenAPI 3.0.2 Schema Object. The schema files
that can be used here are found in gs://google-cloud-
aiplatform/schema/dataset/metadata/.
gcs_source (Union[str, Sequence[str]]):
Google Cloud Storage URI(-s) to the
input file(s). May contain wildcards. For more
information on wildcards, see
https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames.
examples:
str: "gs://bucket/file.csv"
Sequence[str]: ["gs://bucket/file1.csv", "gs://bucket/file2.csv"]
bq_source (str):
BigQuery URI to the input table.
example:
"bq://project.dataset.table_name"
import_schema_uri (str):
Points to a YAML file stored on Google Cloud
Storage describing the import format. Validation will be
done against the schema. The schema is defined as an
`OpenAPI 3.0.2 Schema
Object <https://tinyurl.com/y538mdwt>`__.
data_item_labels (Dict):
Labels that will be applied to newly imported DataItems. If
an identical DataItem as one being imported already exists
in the Dataset, then these labels will be appended to these
of the already existing one, and if labels with identical
key is imported before, the old label value will be
overwritten. If two DataItems are identical in the same
import data operation, the labels will be combined and if
key collision happens in this case, one of the values will
be picked randomly. Two DataItems are considered identical
if their content bytes are identical (e.g. image bytes or
pdf bytes). These labels will be overridden by Annotation
labels specified inside index file referenced by
``import_schema_uri``,
e.g. jsonl file.
This arg is not for specifying the annotation name or the
training target of your data, but for some global labels of
the dataset. E.g.,
'data_item_labels={"aiplatform.googleapis.com/ml_use":"training"}'
specifies that all the uploaded data are used for training.
project (str):
Project to upload this dataset to. Overrides project set in
aiplatform.init.
location (str):
Location to upload this dataset to. Overrides location set in
aiplatform.init.
credentials (auth_credentials.Credentials):
Custom credentials to use to upload this dataset. Overrides
credentials set in aiplatform.init.
request_metadata (Sequence[Tuple[str, str]]):
Strings which should be sent along with the request as metadata.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your datasets.
Label keys and values can be no longer than 64 characters
(Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed.
No more than 64 user labels can be associated with one Dataset
(System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels.
System reserved label keys are prefixed with "aiplatform.googleapis.com/"
and are immutable.
encryption_spec_key_name (Optional[str]):
Optional. The Cloud KMS resource identifier of the customer
managed encryption key used to protect the dataset. Has the
form:
``projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key``.
The key needs to be in the same region as where the compute
resource is created.
If set, this Dataset and all sub-resources of this Dataset will be secured by this key.
Overrides encryption_spec_key_name set in aiplatform.init.
sync (bool):
Whether to execute this method synchronously. If False, this method
will be executed in concurrent Future and any downstream object will
be immediately returned and synced when the Future has completed.
create_request_timeout (float):
Optional. The timeout for the create request in seconds.
Returns:
dataset (Dataset):
Instantiated representation of the managed dataset resource.
"""
if not display_name:
display_name = cls._generate_display_name()
utils.validate_display_name(display_name)
if labels:
utils.validate_labels(labels)
api_client = cls._instantiate_client(location=location, credentials=credentials)
datasource = _datasources.create_datasource(
metadata_schema_uri=metadata_schema_uri,
import_schema_uri=import_schema_uri,
gcs_source=gcs_source,
bq_source=bq_source,
data_item_labels=data_item_labels,
)
return cls._create_and_import(
api_client=api_client,
parent=initializer.global_config.common_location_path(
project=project, location=location
),
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
project=project or initializer.global_config.project,
location=location or initializer.global_config.location,
credentials=credentials or initializer.global_config.credentials,
request_metadata=request_metadata,
labels=labels,
encryption_spec=initializer.global_config.get_encryption_spec(
encryption_spec_key_name=encryption_spec_key_name
),
sync=sync,
create_request_timeout=create_request_timeout,
)
@classmethod
@base.optional_sync()
def _create_and_import(
cls,
api_client: dataset_service_client.DatasetServiceClient,
parent: str,
display_name: str,
metadata_schema_uri: str,
datasource: _datasources.Datasource,
project: str,
location: str,
credentials: Optional[auth_credentials.Credentials],
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec: Optional[gca_encryption_spec.EncryptionSpec] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
import_request_timeout: Optional[float] = None,
) -> "_Dataset":
"""Creates a new dataset and optionally imports data into dataset when
source and import_schema_uri are passed.
Args:
api_client (dataset_service_client.DatasetServiceClient):
An instance of DatasetServiceClient with the correct api_endpoint
already set based on user's preferences.
parent (str):
Required. Also known as common location path, that usually contains the
project and location that the user provided to the upstream method.
Example: "projects/my-prj/locations/us-central1"
display_name (str):
Required. The user-defined name of the Dataset.
The name can be up to 128 characters long and can be consist
of any UTF-8 characters.
metadata_schema_uri (str):
Required. Points to a YAML file stored on Google Cloud Storage
describing additional information about the Dataset. The schema
is defined as an OpenAPI 3.0.2 Schema Object. The schema files
that can be used here are found in gs://google-cloud-
aiplatform/schema/dataset/metadata/.
datasource (_datasources.Datasource):
Required. Datasource for creating a dataset for Vertex AI.
project (str):
Required. Project to upload this model to. Overrides project set in
aiplatform.init.
location (str):
Required. Location to upload this model to. Overrides location set in
aiplatform.init.
credentials (Optional[auth_credentials.Credentials]):
Custom credentials to use to upload this model. Overrides
credentials set in aiplatform.init.
request_metadata (Sequence[Tuple[str, str]]):
Strings which should be sent along with the request as metadata.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your Tensorboards.
Label keys and values can be no longer than 64 characters
(Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed.
No more than 64 user labels can be associated with one Tensorboard
(System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels.
System reserved label keys are prefixed with "aiplatform.googleapis.com/"
and are immutable.
encryption_spec (Optional[gca_encryption_spec.EncryptionSpec]):
Optional. The Cloud KMS customer managed encryption key used to protect the dataset.
The key needs to be in the same region as where the compute
resource is created.
If set, this Dataset and all sub-resources of this Dataset will be secured by this key.
sync (bool):
Whether to execute this method synchronously. If False, this method
will be executed in concurrent Future and any downstream object will
be immediately returned and synced when the Future has completed.
create_request_timeout (float):
Optional. The timeout for the create request in seconds.
import_request_timeout (float):
Optional. The timeout for the import request in seconds.
Returns:
dataset (Dataset):
Instantiated representation of the managed dataset resource.
"""
create_dataset_lro = cls._create(
api_client=api_client,
parent=parent,
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
request_metadata=request_metadata,
labels=labels,
encryption_spec=encryption_spec,
create_request_timeout=create_request_timeout,
)
_LOGGER.log_create_with_lro(cls, create_dataset_lro)
created_dataset = create_dataset_lro.result(timeout=None)
_LOGGER.log_create_complete(cls, created_dataset, "ds")
dataset_obj = cls(
dataset_name=created_dataset.name,
project=project,
location=location,
credentials=credentials,
)
# Import if import datasource is DatasourceImportable
if isinstance(datasource, _datasources.DatasourceImportable):
dataset_obj._import_and_wait(
datasource, import_request_timeout=import_request_timeout
)
return dataset_obj
def _import_and_wait(
self,
datasource,
import_request_timeout: Optional[float] = None,
):
_LOGGER.log_action_start_against_resource(
"Importing",
"data",
self,
)
import_lro = self._import(
datasource=datasource, import_request_timeout=import_request_timeout
)
_LOGGER.log_action_started_against_resource_with_lro(
"Import", "data", self.__class__, import_lro
)
import_lro.result(timeout=None)
_LOGGER.log_action_completed_against_resource("data", "imported", self)
@classmethod
def _create(
cls,
api_client: dataset_service_client.DatasetServiceClient,
parent: str,
display_name: str,
metadata_schema_uri: str,
datasource: _datasources.Datasource,
request_metadata: Sequence[Tuple[str, str]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec: Optional[gca_encryption_spec.EncryptionSpec] = None,
create_request_timeout: Optional[float] = None,
) -> operation.Operation:
"""Creates a new managed dataset by directly calling API client.
Args:
api_client (dataset_service_client.DatasetServiceClient):
An instance of DatasetServiceClient with the correct api_endpoint
already set based on user's preferences.
parent (str):
Required. Also known as common location path, that usually contains the
project and location that the user provided to the upstream method.
Example: "projects/my-prj/locations/us-central1"
display_name (str):
Required. The user-defined name of the Dataset.
The name can be up to 128 characters long and can be consist
of any UTF-8 characters.
metadata_schema_uri (str):
Required. Points to a YAML file stored on Google Cloud Storage
describing additional information about the Dataset. The schema
is defined as an OpenAPI 3.0.2 Schema Object. The schema files
that can be used here are found in gs://google-cloud-
aiplatform/schema/dataset/metadata/.
datasource (_datasources.Datasource):
Required. Datasource for creating a dataset for Vertex AI.
request_metadata (Sequence[Tuple[str, str]]):
Strings which should be sent along with the create_dataset
request as metadata. Usually to specify special dataset config.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your Tensorboards.
Label keys and values can be no longer than 64 characters
(Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed.
No more than 64 user labels can be associated with one Tensorboard
(System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels.
System reserved label keys are prefixed with "aiplatform.googleapis.com/"
and are immutable.
encryption_spec (Optional[gca_encryption_spec.EncryptionSpec]):
Optional. The Cloud KMS customer managed encryption key used to protect the dataset.
The key needs to be in the same region as where the compute
resource is created.
If set, this Dataset and all sub-resources of this Dataset will be secured by this key.
create_request_timeout (float):
Optional. The timeout for the create request in seconds.
Returns:
operation (Operation):
An object representing a long-running operation.
"""
gapic_dataset = gca_dataset.Dataset(
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
metadata=datasource.dataset_metadata,
labels=labels,
encryption_spec=encryption_spec,
)
return api_client.create_dataset(
parent=parent,
dataset=gapic_dataset,
metadata=request_metadata,
timeout=create_request_timeout,
)
def _import(
self,
datasource: _datasources.DatasourceImportable,
import_request_timeout: Optional[float] = None,
) -> operation.Operation:
"""Imports data into managed dataset by directly calling API client.
Args:
datasource (_datasources.DatasourceImportable):
Required. Datasource for importing data to an existing dataset for Vertex AI.
import_request_timeout (float):
Optional. The timeout for the import request in seconds.
Returns:
operation (Operation):
An object representing a long-running operation.
"""
return self.api_client.import_data(
name=self.resource_name,
import_configs=[datasource.import_data_config],
timeout=import_request_timeout,
)
@base.optional_sync(return_input_arg="self")
def import_data(
self,
gcs_source: Union[str, Sequence[str]],
import_schema_uri: str,
data_item_labels: Optional[Dict] = None,
sync: bool = True,
import_request_timeout: Optional[float] = None,
) -> "_Dataset":
"""Upload data to existing managed dataset.
Args:
gcs_source (Union[str, Sequence[str]]):
Required. Google Cloud Storage URI(-s) to the
input file(s). May contain wildcards. For more
information on wildcards, see
https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames.
examples:
str: "gs://bucket/file.csv"
Sequence[str]: ["gs://bucket/file1.csv", "gs://bucket/file2.csv"]
import_schema_uri (str):
Required. Points to a YAML file stored on Google Cloud
Storage describing the import format. Validation will be
done against the schema. The schema is defined as an
`OpenAPI 3.0.2 Schema
Object <https://tinyurl.com/y538mdwt>`__.
data_item_labels (Dict):
Labels that will be applied to newly imported DataItems. If
an identical DataItem as one being imported already exists
in the Dataset, then these labels will be appended to these
of the already existing one, and if labels with identical
key is imported before, the old label value will be
overwritten. If two DataItems are identical in the same
import data operation, the labels will be combined and if
key collision happens in this case, one of the values will
be picked randomly. Two DataItems are considered identical
if their content bytes are identical (e.g. image bytes or
pdf bytes). These labels will be overridden by Annotation
labels specified inside index file referenced by
``import_schema_uri``,
e.g. jsonl file.
This arg is not for specifying the annotation name or the
training target of your data, but for some global labels of
the dataset. E.g.,
'data_item_labels={"aiplatform.googleapis.com/ml_use":"training"}'
specifies that all the uploaded data are used for training.
sync (bool):
Whether to execute this method synchronously. If False, this method
will be executed in concurrent Future and any downstream object will
be immediately returned and synced when the Future has completed.
import_request_timeout (float):
Optional. The timeout for the import request in seconds.
Returns:
dataset (Dataset):
Instantiated representation of the managed dataset resource.
"""
datasource = _datasources.create_datasource(
metadata_schema_uri=self.metadata_schema_uri,
import_schema_uri=import_schema_uri,
gcs_source=gcs_source,
data_item_labels=data_item_labels,
)
self._import_and_wait(
datasource=datasource, import_request_timeout=import_request_timeout
)
return self
def _validate_and_convert_export_split(
self,
split: Union[Dict[str, str], Dict[str, float]],
) -> Union[gca_dataset.ExportFilterSplit, gca_dataset.ExportFractionSplit]:
"""
Validates the split for data export. Valid splits are dicts
encoding the contents of proto messages ExportFilterSplit or
ExportFractionSplit. If the split is valid, this function returns
the corresponding convertered proto message.
split (Union[Dict[str, str], Dict[str, float]]):
The instructions how the export data should be split between the
training, validation and test sets.
"""
if len(split) != 3:
raise ValueError(
"The provided split for data export does not provide enough"
"information. It must have three fields, mapping to training,"
"validation and test splits respectively."
)
if not ("training_filter" in split or "training_fraction" in split):
raise ValueError(
"The provided filter for data export does not provide enough"
"information. It must have three fields, mapping to training,"
"validation and test respectively."
)
if "training_filter" in split:
if (
"validation_filter" in split
and "test_filter" in split
and isinstance(split["training_filter"], str)
and isinstance(split["validation_filter"], str)
and isinstance(split["test_filter"], str)
):
return gca_dataset.ExportFilterSplit(
training_filter=split["training_filter"],
validation_filter=split["validation_filter"],
test_filter=split["test_filter"],
)
else:
raise ValueError(
"The provided ExportFilterSplit does not contain all"
"three required fields: training_filter, "
"validation_filter and test_filter."
)
else:
if (
"validation_fraction" in split
and "test_fraction" in split
and isinstance(split["training_fraction"], float)
and isinstance(split["validation_fraction"], float)
and isinstance(split["test_fraction"], float)
):
return gca_dataset.ExportFractionSplit(
training_fraction=split["training_fraction"],
validation_fraction=split["validation_fraction"],
test_fraction=split["test_fraction"],
)
else:
raise ValueError(
"The provided ExportFractionSplit does not contain all"
"three required fields: training_fraction, "
"validation_fraction and test_fraction."
)
def _get_completed_export_data_operation(
self,
output_dir: str,
export_use: Optional[gca_dataset.ExportDataConfig.ExportUse] = None,
annotation_filter: Optional[str] = None,
saved_query_id: Optional[str] = None,
annotation_schema_uri: Optional[str] = None,
split: Optional[
Union[gca_dataset.ExportFilterSplit, gca_dataset.ExportFractionSplit]
] = None,
) -> gca_dataset_service.ExportDataResponse:
self.wait()
# TODO(b/171311614): Add support for BigQuery export path
export_data_config = gca_dataset.ExportDataConfig(
gcs_destination=gca_io.GcsDestination(output_uri_prefix=output_dir)
)
if export_use is not None:
export_data_config.export_use = export_use
if annotation_filter is not None:
export_data_config.annotation_filter = annotation_filter
if saved_query_id is not None:
export_data_config.saved_query_id = saved_query_id
if annotation_schema_uri is not None:
export_data_config.annotation_schema_uri = annotation_schema_uri
if split is not None:
if isinstance(split, gca_dataset.ExportFilterSplit):
export_data_config.filter_split = split
elif isinstance(split, gca_dataset.ExportFractionSplit):
export_data_config.fraction_split = split
_LOGGER.log_action_start_against_resource("Exporting", "data", self)
export_lro = self.api_client.export_data(
name=self.resource_name, export_config=export_data_config
)
_LOGGER.log_action_started_against_resource_with_lro(
"Export", "data", self.__class__, export_lro
)
export_data_response = export_lro.result()
_LOGGER.log_action_completed_against_resource("data", "export", self)
return export_data_response
# TODO(b/174751568) add optional sync support
def export_data(self, output_dir: str) -> Sequence[str]:
"""Exports data to output dir to GCS.
Args:
output_dir (str):
Required. The Google Cloud Storage location where the output is to
be written to. In the given directory a new directory will be
created with name:
``export-data-<dataset-display-name>-<timestamp-of-export-call>``
where timestamp is in YYYYMMDDHHMMSS format. All export
output will be written into that directory. Inside that
directory, annotations with the same schema will be grouped
into sub directories which are named with the corresponding
annotations' schema title. Inside these sub directories, a
schema.yaml will be created to describe the output format.
If the uri doesn't end with '/', a '/' will be automatically
appended. The directory is created if it doesn't exist.
Returns:
exported_files (Sequence[str]):
All of the files that are exported in this export operation.
"""
return self._get_completed_export_data_operation(output_dir).exported_files
def export_data_for_custom_training(
self,
output_dir: str,
annotation_filter: Optional[str] = None,
saved_query_id: Optional[str] = None,
annotation_schema_uri: Optional[str] = None,
split: Optional[Union[Dict[str, str], Dict[str, float]]] = None,
) -> Dict[str, Any]:
"""Exports data to output dir to GCS for custom training use case.
Example annotation_schema_uri (image classification):
gs://google-cloud-aiplatform/schema/dataset/annotation/image_classification_1.0.0.yaml
Example split (filter split):
{
"training_filter": "labels.aiplatform.googleapis.com/ml_use=training",
"validation_filter": "labels.aiplatform.googleapis.com/ml_use=validation",
"test_filter": "labels.aiplatform.googleapis.com/ml_use=test",
}
Example split (fraction split):
{
"training_fraction": 0.7,
"validation_fraction": 0.2,
"test_fraction": 0.1,
}
Args:
output_dir (str):
Required. The Google Cloud Storage location where the output is to
be written to. In the given directory a new directory will be
created with name:
``export-data-<dataset-display-name>-<timestamp-of-export-call>``
where timestamp is in YYYYMMDDHHMMSS format. All export
output will be written into that directory. Inside that
directory, annotations with the same schema will be grouped
into sub directories which are named with the corresponding
annotations' schema title. Inside these sub directories, a
schema.yaml will be created to describe the output format.
If the uri doesn't end with '/', a '/' will be automatically
appended. The directory is created if it doesn't exist.
annotation_filter (str):
Optional. An expression for filtering what part of the Dataset
is to be exported.
Only Annotations that match this filter will be exported.
The filter syntax is the same as in
[ListAnnotations][DatasetService.ListAnnotations].
saved_query_id (str):
Optional. The ID of a SavedQuery (annotation set) under this
Dataset used for filtering Annotations for training.
Only used for custom training data export use cases.
Only applicable to Datasets that have SavedQueries.
Only Annotations that are associated with this SavedQuery are
used in respectively training. When used in conjunction with
annotations_filter, the Annotations used for training are
filtered by both saved_query_id and annotations_filter.
Only one of saved_query_id and annotation_schema_uri should be
specified as both of them represent the same thing: problem
type.
annotation_schema_uri (str):
Optional. The Cloud Storage URI that points to a YAML file
describing the annotation schema. The schema is defined as an
OpenAPI 3.0.2 Schema Object. The schema files that can be used
here are found in
gs://google-cloud-aiplatform/schema/dataset/annotation/, note
that the chosen schema must be consistent with
metadata_schema_uri of this Dataset.
Only used for custom training data export use cases.
Only applicable if this Dataset that have DataItems and
Annotations.
Only Annotations that both match this schema and belong to
DataItems not ignored by the split method are used in
respectively training, validation or test role, depending on the
role of the DataItem they are on.
When used in conjunction with annotations_filter, the
Annotations used for training are filtered by both
annotations_filter and annotation_schema_uri.
split (Union[Dict[str, str], Dict[str, float]]):
The instructions how the export data should be split between the
training, validation and test sets.
Returns:
export_data_response (Dict):
Response message for DatasetService.ExportData in Dictionary
format.
"""
split = self._validate_and_convert_export_split(split)
return json_format.MessageToDict(
self._get_completed_export_data_operation(
output_dir,
gca_dataset.ExportDataConfig.ExportUse.CUSTOM_CODE_TRAINING,
annotation_filter,
saved_query_id,
annotation_schema_uri,
split,
)._pb
)
def update(
self,
*,
display_name: Optional[str] = None,
labels: Optional[Dict[str, str]] = None,
description: Optional[str] = None,
update_request_timeout: Optional[float] = None,
) -> "_Dataset":
"""Update the dataset.
Updatable fields:
- ``display_name``
- ``description``
- ``labels``
Args:
display_name (str):
Optional. The user-defined name of the Dataset.
The name can be up to 128 characters long and can be consist
of any UTF-8 characters.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your Tensorboards.
Label keys and values can be no longer than 64 characters
(Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed.
No more than 64 user labels can be associated with one Tensorboard
(System labels are excluded).
See https://goo.gl/xmQnxf for more information and examples of labels.
System reserved label keys are prefixed with "aiplatform.googleapis.com/"
and are immutable.
description (str):
Optional. The description of the Dataset.
update_request_timeout (float):
Optional. The timeout for the update request in seconds.
Returns:
dataset (Dataset):
Updated dataset.
"""
update_mask = field_mask_pb2.FieldMask()
if display_name:
update_mask.paths.append("display_name")
if labels:
update_mask.paths.append("labels")
if description:
update_mask.paths.append("description")
update_dataset = gca_dataset.Dataset(
name=self.resource_name,
display_name=display_name,
description=description,
labels=labels,
)
self._gca_resource = self.api_client.update_dataset(
dataset=update_dataset,
update_mask=update_mask,
timeout=update_request_timeout,
)
return self
@classmethod
def list(
cls,
filter: Optional[str] = None,
order_by: Optional[str] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
) -> List[base.VertexAiResourceNoun]:
"""List all instances of this Dataset resource.
Example Usage:
aiplatform.TabularDataset.list(
filter='labels.my_key="my_value"',
order_by='display_name'
)
Args:
filter (str):
Optional. An expression for filtering the results of the request.
For field names both snake_case and camelCase are supported.
order_by (str):
Optional. A comma-separated list of fields to order by, sorted in
ascending order. Use "desc" after a field name for descending.
Supported fields: `display_name`, `create_time`, `update_time`
project (str):
Optional. Project to retrieve list from. If not set, project
set in aiplatform.init will be used.
location (str):
Optional. Location to retrieve list from. If not set, location
set in aiplatform.init will be used.
credentials (auth_credentials.Credentials):
Optional. Custom credentials to use to retrieve list. Overrides
credentials set in aiplatform.init.
Returns:
List[base.VertexAiResourceNoun] - A list of Dataset resource objects
"""
dataset_subclass_filter = (
lambda gapic_obj: gapic_obj.metadata_schema_uri
in cls._supported_metadata_schema_uris
)
return cls._list_with_local_order(
cls_filter=dataset_subclass_filter,
filter=filter,
order_by=order_by,
project=project,
location=location,
credentials=credentials,
)

View File

@@ -0,0 +1,198 @@
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Dict, Optional, Sequence, Tuple, Union
from google.auth import credentials as auth_credentials
from google.cloud.aiplatform import datasets
from google.cloud.aiplatform.datasets import _datasources
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import schema
from google.cloud.aiplatform import utils
class ImageDataset(datasets._Dataset):
"""A managed image dataset resource for Vertex AI.
Use this class to work with a managed image dataset. To create a managed
image dataset, you need a datasource file in CSV format and a schema file in
YAML format. A schema is optional for a custom model. You put the CSV file
and the schema into Cloud Storage buckets.
Use image data for the following objectives:
* Single-label classification. For more information, see
[Prepare image training data for single-label classification](https://cloud.google.com/vertex-ai/docs/image-data/classification/prepare-data#single-label-classification).
* Multi-label classification. For more information, see [Prepare image training data for multi-label classification](https://cloud.google.com/vertex-ai/docs/image-data/classification/prepare-data#multi-label-classification).
* Object detection. For more information, see [Prepare image training data
for object detection](https://cloud.google.com/vertex-ai/docs/image-data/object-detection/prepare-data).
The following code shows you how to create an image dataset by importing data from
a CSV datasource file and a YAML schema file. The schema file you use
depends on whether your image dataset is used for single-label
classification, multi-label classification, or object detection.
```py
my_dataset = aiplatform.ImageDataset.create(
display_name="my-image-dataset",
gcs_source=['gs://path/to/my/image-dataset.csv'],
import_schema_uri=['gs://path/to/my/schema.yaml']
)
```
"""
_supported_metadata_schema_uris: Optional[Tuple[str]] = (
schema.dataset.metadata.image,
)
@classmethod
def create(
cls,
display_name: Optional[str] = None,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
import_schema_uri: Optional[str] = None,
data_item_labels: Optional[Dict] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec_key_name: Optional[str] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
) -> "ImageDataset":
"""Creates a new image dataset.
Optionally imports data into the dataset when a source and
`import_schema_uri` are passed in.
Args:
display_name (str):
Optional. The user-defined name of the dataset. The name must
contain 128 or fewer UTF-8 characters.
gcs_source (Union[str, Sequence[str]]):
Optional. The URI to one or more Google Cloud Storage buckets
that contain your datasets. For example, `str:
"gs://bucket/file.csv"` or `Sequence[str]:
["gs://bucket/file1.csv", "gs://bucket/file2.csv"]`.
import_schema_uri (str):
Optional. A URI for a YAML file stored in Cloud Storage that
describes the import schema used to validate the
dataset. The schema is an
[OpenAPI 3.0.2 Schema](https://tinyurl.com/y538mdwt) object.
data_item_labels (Dict):
Optional. A dictionary of label information. Each dictionary
item contains a label and a label key. Each image in the dataset
includes one dictionary of label information. If a data item is
added or merged into a dataset, and that data item contains an
image that's identical to an image thats already in the
dataset, then the data items are merged. If two identical labels
are detected during the merge, each with a different label key,
then one of the label and label key dictionary items is randomly
chosen to be into the merged data item. Images and documents are
compared using their binary data (bytes), not on their content.
If annotation labels are referenced in a schema specified by the
`import_schema_url` parameter, then the labels in the
`data_item_labels` dictionary are overriden by the annotations.
project (str):
Optional. The name of the Google Cloud project to which this
`ImageDataset` is uploaded. This overrides the project that
was set by `aiplatform.init`.
location (str):
Optional. The Google Cloud region where this dataset is uploaded. This
region overrides the region that was set by `aiplatform.init`.
credentials (auth_credentials.Credentials):
Optional. The credentials that are used to upload the
`ImageDataset`. These credentials override the credentials set
by `aiplatform.init`.
request_metadata (Sequence[Tuple[str, str]]):
Optional. Strings that contain metadata that's sent with the request.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your
Vertex AI Tensorboards. The maximum length of a key and of a
value is 64 unicode characters. Labels and keys can contain only
lowercase letters, numeric characters, underscores, and dashes.
International characters are allowed. No more than 64 user
labels can be associated with one Tensorboard (system labels are
excluded). For more information and examples of using labels, see
[Using labels to organize Google Cloud Platform resources](https://goo.gl/xmQnxf).
System reserved label keys are prefixed with
`aiplatform.googleapis.com/` and are immutable.
encryption_spec_key_name (Optional[str]):
Optional. The Cloud KMS resource identifier of the customer
managed encryption key that's used to protect the dataset. The
format of the key is
`projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`.
The key needs to be in the same region as where the compute
resource is created.
If `encryption_spec_key_name` is set, this image dataset and
all of its sub-resources are secured by this key.
This `encryption_spec_key_name` overrides the
`encryption_spec_key_name` set by `aiplatform.init`.
sync (bool):
If `true`, the `create` method creates an image dataset
synchronously. If `false`, the `create` method creates an image
dataset asynchronously.
create_request_timeout (float):
Optional. The number of seconds for the timeout of the create
request.
Returns:
image_dataset (ImageDataset):
An instantiated representation of the managed `ImageDataset`
resource.
"""
if not display_name:
display_name = cls._generate_display_name()
utils.validate_display_name(display_name)
if labels:
utils.validate_labels(labels)
api_client = cls._instantiate_client(location=location, credentials=credentials)
metadata_schema_uri = schema.dataset.metadata.image
datasource = _datasources.create_datasource(
metadata_schema_uri=metadata_schema_uri,
import_schema_uri=import_schema_uri,
gcs_source=gcs_source,
data_item_labels=data_item_labels,
)
return cls._create_and_import(
api_client=api_client,
parent=initializer.global_config.common_location_path(
project=project, location=location
),
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
project=project or initializer.global_config.project,
location=location or initializer.global_config.location,
credentials=credentials or initializer.global_config.credentials,
request_metadata=request_metadata,
labels=labels,
encryption_spec=initializer.global_config.get_encryption_spec(
encryption_spec_key_name=encryption_spec_key_name
),
sync=sync,
create_request_timeout=create_request_timeout,
)

View File

@@ -0,0 +1,318 @@
# -*- coding: utf-8 -*-
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Dict, Optional, Sequence, Tuple, Union, TYPE_CHECKING
from google.auth import credentials as auth_credentials
from google.cloud.aiplatform import base
from google.cloud.aiplatform import datasets
from google.cloud.aiplatform.datasets import _datasources
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import schema
from google.cloud.aiplatform import utils
if TYPE_CHECKING:
from google.cloud import bigquery
_AUTOML_TRAINING_MIN_ROWS = 1000
_LOGGER = base.Logger(__name__)
class TabularDataset(datasets._ColumnNamesDataset):
"""A managed tabular dataset resource for Vertex AI.
Use this class to work with tabular datasets. You can use a CSV file, BigQuery, or a pandas
[`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html)
to create a tabular dataset. For more information about paging through
BigQuery data, see [Read data with BigQuery API using
pagination](https://cloud.google.com/bigquery/docs/paging-results). For more
information about tabular data, see [Tabular
data](https://cloud.google.com/vertex-ai/docs/training-overview#tabular_data).
The following code shows you how to create and import a tabular
dataset with a CSV file.
```py
my_dataset = aiplatform.TabularDataset.create(
display_name="my-dataset", gcs_source=['gs://path/to/my/dataset.csv'])
```
Contrary to unstructured datasets, creating and importing a tabular dataset
can only be done in a single step.
If you create a tabular dataset with a pandas
[`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html),
you need to use a BigQuery table to stage the data for Vertex AI:
```py
my_dataset = aiplatform.TabularDataset.create_from_dataframe(
df_source=my_pandas_dataframe,
staging_path=f"bq://{bq_dataset_id}.table-unique"
)
```
"""
_supported_metadata_schema_uris: Optional[Tuple[str]] = (
schema.dataset.metadata.tabular,
)
@classmethod
def create(
cls,
display_name: Optional[str] = None,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
bq_source: Optional[str] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec_key_name: Optional[str] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
) -> "TabularDataset":
"""Creates a tabular dataset.
Args:
display_name (str):
Optional. The user-defined name of the dataset. The name must
contain 128 or fewer UTF-8 characters.
gcs_source (Union[str, Sequence[str]]):
Optional. The URI to one or more Google Cloud Storage buckets that contain
your datasets. For example, `str: "gs://bucket/file.csv"` or
`Sequence[str]: ["gs://bucket/file1.csv",
"gs://bucket/file2.csv"]`. Either `gcs_source` or `bq_source` must be specified.
bq_source (str):
Optional. The URI to a BigQuery table that's used as an input source. For
example, `bq://project.dataset.table_name`. Either `gcs_source`
or `bq_source` must be specified.
project (str):
Optional. The name of the Google Cloud project to which this
`TabularDataset` is uploaded. This overrides the project that
was set by `aiplatform.init`.
location (str):
Optional. The Google Cloud region where this dataset is uploaded. This
region overrides the region that was set by `aiplatform.init`.
credentials (auth_credentials.Credentials):
Optional. The credentials that are used to upload the `TabularDataset`.
These credentials override the credentials set by
`aiplatform.init`.
request_metadata (Sequence[Tuple[str, str]]):
Optional. Strings that contain metadata that's sent with the request.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your
Vertex AI Tensorboards. The maximum length of a key and of a
value is 64 unicode characters. Labels and keys can contain only
lowercase letters, numeric characters, underscores, and dashes.
International characters are allowed. No more than 64 user
labels can be associated with one Tensorboard (system labels are
excluded). For more information and examples of using labels, see
[Using labels to organize Google Cloud Platform resources](https://goo.gl/xmQnxf).
System reserved label keys are prefixed with
`aiplatform.googleapis.com/` and are immutable.
encryption_spec_key_name (Optional[str]):
Optional. The Cloud KMS resource identifier of the customer
managed encryption key that's used to protect the dataset. The
format of the key is
`projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`.
The key needs to be in the same region as where the compute
resource is created.
If `encryption_spec_key_name` is set, this `TabularDataset` and
all of its sub-resources are secured by this key.
This `encryption_spec_key_name` overrides the
`encryption_spec_key_name` set by `aiplatform.init`.
sync (bool):
If `true`, the `create` method creates a tabular dataset
synchronously. If `false`, the `create` method creates a tabular
dataset asynchronously.
create_request_timeout (float):
Optional. The number of seconds for the timeout of the create
request.
Returns:
tabular_dataset (TabularDataset):
An instantiated representation of the managed `TabularDataset` resource.
"""
if not display_name:
display_name = cls._generate_display_name()
utils.validate_display_name(display_name)
if labels:
utils.validate_labels(labels)
api_client = cls._instantiate_client(location=location, credentials=credentials)
metadata_schema_uri = schema.dataset.metadata.tabular
datasource = _datasources.create_datasource(
metadata_schema_uri=metadata_schema_uri,
gcs_source=gcs_source,
bq_source=bq_source,
)
return cls._create_and_import(
api_client=api_client,
parent=initializer.global_config.common_location_path(
project=project, location=location
),
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
project=project or initializer.global_config.project,
location=location or initializer.global_config.location,
credentials=credentials or initializer.global_config.credentials,
request_metadata=request_metadata,
labels=labels,
encryption_spec=initializer.global_config.get_encryption_spec(
encryption_spec_key_name=encryption_spec_key_name
),
sync=sync,
create_request_timeout=create_request_timeout,
)
@classmethod
def create_from_dataframe(
cls,
df_source: "pd.DataFrame", # noqa: F821 - skip check for undefined name 'pd'
staging_path: str,
bq_schema: Optional[Union[str, "bigquery.SchemaField"]] = None,
display_name: Optional[str] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
) -> "TabularDataset":
"""Creates a new tabular dataset from a pandas `DataFrame`.
Args:
df_source (pd.DataFrame):
Required. A pandas
[`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html)
containing the source data for ingestion as a `TabularDataset`.
This method uses the data types from the provided `DataFrame`
when the `TabularDataset` is created.
staging_path (str):
Required. The BigQuery table used to stage the data for Vertex
AI. Because Vertex AI maintains a reference to this source to
create the `TabularDataset`, you shouldn't delete this BigQuery
table. For example: `bq://my-project.my-dataset.my-table`.
If the specified BigQuery table doesn't exist, then the table is
created for you. If the provided BigQuery table already exists,
and the schemas of the BigQuery table and your DataFrame match,
then the data in your local `DataFrame` is appended to the table.
The location of the BigQuery table must conform to the
[BigQuery location requirements](https://cloud.google.com/vertex-ai/docs/general/locations#bq-locations).
bq_schema (Optional[Union[str, bigquery.SchemaField]]):
Optional. If not set, BigQuery autodetects the schema using the
column types of your `DataFrame`. If set, BigQuery uses the
schema you provide when the staging table is created. For more
information,
see the BigQuery
[`LoadJobConfig.schema`](https://cloud.google.com/python/docs/reference/bigquery/latest/google.cloud.bigquery.job.LoadJobConfig#google_cloud_bigquery_job_LoadJobConfig_schema)
property.
display_name (str):
Optional. The user-defined name of the `Dataset`. The name must
contain 128 or fewer UTF-8 characters.
project (str):
Optional. The project to upload this dataset to. This overrides
the project set using `aiplatform.init`.
location (str):
Optional. The location to upload this dataset to. This overrides
the location set using `aiplatform.init`.
credentials (auth_credentials.Credentials):
Optional. The custom credentials used to upload this dataset.
This overrides credentials set using `aiplatform.init`.
Returns:
tabular_dataset (TabularDataset):
An instantiated representation of the managed `TabularDataset` resource.
"""
if staging_path.startswith("bq://"):
bq_staging_path = staging_path[len("bq://") :]
else:
raise ValueError(
"Only BigQuery staging paths are supported. Provide a staging path in the format `bq://your-project.your-dataset.your-table`."
)
try:
import pyarrow # noqa: F401 - skip check for 'pyarrow' which is required when using 'google.cloud.bigquery'
except ImportError:
raise ImportError(
"Pyarrow is not installed, and is required to use the BigQuery client."
'Please install the SDK using "pip install google-cloud-aiplatform[datasets]"'
)
import pandas.api.types as pd_types
if any(
[
pd_types.is_datetime64_any_dtype(df_source[column])
for column in df_source.columns
]
):
_LOGGER.info(
"Received datetime-like column in the dataframe. Please note that the column could be interpreted differently in BigQuery depending on which major version you are using. For more information, please reference the BigQuery v3 release notes here: https://github.com/googleapis/python-bigquery/releases/tag/v3.0.0"
)
if len(df_source) < _AUTOML_TRAINING_MIN_ROWS:
_LOGGER.info(
"Your DataFrame has %s rows and AutoML requires %s rows to train on tabular data. You can still train a custom model once your dataset has been uploaded to Vertex, but you will not be able to use AutoML for training."
% (len(df_source), _AUTOML_TRAINING_MIN_ROWS),
)
# Loading bigquery lazily to avoid auto-loading it when importing vertexai
from google.cloud import bigquery # pylint: disable=g-import-not-at-top
bigquery_client = bigquery.Client(
project=project or initializer.global_config.project,
credentials=credentials or initializer.global_config.credentials,
)
try:
parquet_options = bigquery.format_options.ParquetOptions()
parquet_options.enable_list_inference = True
job_config = bigquery.LoadJobConfig(
source_format=bigquery.SourceFormat.PARQUET,
parquet_options=parquet_options,
)
if bq_schema:
job_config.schema = bq_schema
job = bigquery_client.load_table_from_dataframe(
dataframe=df_source, destination=bq_staging_path, job_config=job_config
)
job.result()
finally:
dataset_from_dataframe = cls.create(
display_name=display_name,
bq_source=staging_path,
project=project,
location=location,
credentials=credentials,
)
return dataset_from_dataframe
def import_data(self):
raise NotImplementedError(
f"{self.__class__.__name__} class does not support 'import_data'"
)

View File

@@ -0,0 +1,207 @@
# -*- coding: utf-8 -*-
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Dict, Optional, Sequence, Tuple, Union
from google.auth import credentials as auth_credentials
from google.cloud.aiplatform import datasets
from google.cloud.aiplatform.datasets import _datasources
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import schema
from google.cloud.aiplatform import utils
class TextDataset(datasets._Dataset):
"""A managed text dataset resource for Vertex AI.
Use this class to work with a managed text dataset. To create a managed
text dataset, you need a datasource file in CSV format and a schema file in
YAML format. A schema is optional for a custom model. The CSV file and the
schema are accessed in Cloud Storage buckets.
Use text data for the following objectives:
* Classification. For more information, see
[Prepare text training data for classification](https://cloud.google.com/vertex-ai/docs/text-data/classification/prepare-data).
* Entity extraction. For more information, see
[Prepare text training data for entity extraction](https://cloud.google.com/vertex-ai/docs/text-data/entity-extraction/prepare-data).
* Sentiment analysis. For more information, see
[Prepare text training data for sentiment analysis](Prepare text training data for sentiment analysis).
The following code shows you how to create and import a text dataset with
a CSV datasource file and a YAML schema file. The schema file you use
depends on whether your text dataset is used for single-label
classification, multi-label classification, or object detection.
```py
my_dataset = aiplatform.TextDataset.create(
display_name="my-text-dataset",
gcs_source=['gs://path/to/my/text-dataset.csv'],
import_schema_uri=['gs://path/to/my/schema.yaml'],
)
```
"""
_supported_metadata_schema_uris: Optional[Tuple[str]] = (
schema.dataset.metadata.text,
)
@classmethod
def create(
cls,
display_name: Optional[str] = None,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
import_schema_uri: Optional[str] = None,
data_item_labels: Optional[Dict] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec_key_name: Optional[str] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
) -> "TextDataset":
"""Creates a new text dataset.
Optionally imports data into this dataset when a source and
`import_schema_uri` are passed in. The following is an example of how
this method is used:
```py
ds = aiplatform.TextDataset.create(
display_name='my-dataset',
gcs_source='gs://my-bucket/dataset.csv',
import_schema_uri=aiplatform.schema.dataset.ioformat.text.multi_label_classification
)
```
Args:
display_name (str):
Optional. The user-defined name of the dataset. The name must
contain 128 or fewer UTF-8 characters.
gcs_source (Union[str, Sequence[str]]):
Optional. The URI to one or more Google Cloud Storage buckets
that contain your datasets. For example, `str:
"gs://bucket/file.csv"` or `Sequence[str]:
["gs://bucket/file1.csv", "gs://bucket/file2.csv"]`.
import_schema_uri (str):
Optional. A URI for a YAML file stored in Cloud Storage that
describes the import schema used to validate the
dataset. The schema is an
[OpenAPI 3.0.2 Schema](https://tinyurl.com/y538mdwt) object.
data_item_labels (Dict):
Optional. A dictionary of label information. Each dictionary
item contains a label and a label key. Each item in the dataset
includes one dictionary of label information. If a data item is
added or merged into a dataset, and that data item contains an
image that's identical to an image thats already in the
dataset, then the data items are merged. If two identical labels
are detected during the merge, each with a different label key,
then one of the label and label key dictionary items is randomly
chosen to be into the merged data item. Data items are
compared using their binary data (bytes), not on their content.
If annotation labels are referenced in a schema specified by the
`import_schema_url` parameter, then the labels in the
`data_item_labels` dictionary are overriden by the annotations.
project (str):
Optional. The name of the Google Cloud project to which this
`TextDataset` is uploaded. This overrides the project that
was set by `aiplatform.init`.
location (str):
Optional. The Google Cloud region where this dataset is uploaded. This
region overrides the region that was set by `aiplatform.init`.
credentials (auth_credentials.Credentials):
Optional. The credentials that are used to upload the `TextDataset`.
These credentials override the credentials set by
`aiplatform.init`.
request_metadata (Sequence[Tuple[str, str]]):
Optional. Strings that contain metadata that's sent with the request.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your
Vertex AI Tensorboards. The maximum length of a key and of a
value is 64 unicode characters. Labels and keys can contain only
lowercase letters, numeric characters, underscores, and dashes.
International characters are allowed. No more than 64 user
labels can be associated with one Tensorboard (system labels are
excluded). For more information and examples of using labels, see
[Using labels to organize Google Cloud Platform resources](https://goo.gl/xmQnxf).
System reserved label keys are prefixed with
`aiplatform.googleapis.com/` and are immutable.
encryption_spec_key_name (Optional[str]):
Optional. The Cloud KMS resource identifier of the customer
managed encryption key that's used to protect the dataset. The
format of the key is
`projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`.
The key needs to be in the same region as where the compute
resource is created.
If `encryption_spec_key_name` is set, this `TextDataset` and
all of its sub-resources are secured by this key.
This `encryption_spec_key_name` overrides the
`encryption_spec_key_name` set by `aiplatform.init`.
sync (bool):
If `true`, the `create` method creates a text dataset
synchronously. If `false`, the `create` method creates a text
dataset asynchronously.
create_request_timeout (float):
Optional. The number of seconds for the timeout of the create
request.
Returns:
text_dataset (TextDataset):
An instantiated representation of the managed `TextDataset`
resource.
"""
if not display_name:
display_name = cls._generate_display_name()
utils.validate_display_name(display_name)
if labels:
utils.validate_labels(labels)
api_client = cls._instantiate_client(location=location, credentials=credentials)
metadata_schema_uri = schema.dataset.metadata.text
datasource = _datasources.create_datasource(
metadata_schema_uri=metadata_schema_uri,
import_schema_uri=import_schema_uri,
gcs_source=gcs_source,
data_item_labels=data_item_labels,
)
return cls._create_and_import(
api_client=api_client,
parent=initializer.global_config.common_location_path(
project=project, location=location
),
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
project=project or initializer.global_config.project,
location=location or initializer.global_config.location,
credentials=credentials or initializer.global_config.credentials,
request_metadata=request_metadata,
labels=labels,
encryption_spec=initializer.global_config.get_encryption_spec(
encryption_spec_key_name=encryption_spec_key_name
),
sync=sync,
create_request_timeout=create_request_timeout,
)

View File

@@ -0,0 +1,186 @@
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Dict, Optional, Sequence, Tuple, Union
from google.auth import credentials as auth_credentials
from google.cloud.aiplatform import datasets
from google.cloud.aiplatform.datasets import _datasources
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import schema
from google.cloud.aiplatform import utils
class TimeSeriesDataset(datasets._ColumnNamesDataset):
"""A managed time series dataset resource for Vertex AI.
Use this class to work with time series datasets. A time series is a dataset
that contains data recorded at different time intervals. The dataset
includes time and at least one variable that's dependent on time. You use a
time series dataset for forecasting predictions. For more information, see
[Forecasting overview](https://cloud.google.com/vertex-ai/docs/tabular-data/forecasting/overview).
You can create a managed time series dataset from CSV files in a Cloud
Storage bucket or from a BigQuery table.
The following code shows you how to create a `TimeSeriesDataset` with a CSV
file that has the time series dataset:
```py
my_dataset = aiplatform.TimeSeriesDataset.create(
display_name="my-dataset",
gcs_source=['gs://path/to/my/dataset.csv'],
)
```
The following code shows you how to create with a `TimeSeriesDataset` with a
BigQuery table file that has the time series dataset:
```py
my_dataset = aiplatform.TimeSeriesDataset.create(
display_name="my-dataset",
bq_source=['bq://path/to/my/bigquerydataset.train'],
)
```
"""
_supported_metadata_schema_uris: Optional[Tuple[str]] = (
schema.dataset.metadata.time_series,
)
@classmethod
def create(
cls,
display_name: Optional[str] = None,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
bq_source: Optional[str] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec_key_name: Optional[str] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
) -> "TimeSeriesDataset":
"""Creates a new time series dataset.
Args:
display_name (str):
Optional. The user-defined name of the dataset. The name must
contain 128 or fewer UTF-8 characters.
gcs_source (Union[str, Sequence[str]]):
The URI to one or more Google Cloud Storage buckets that contain
your datasets. For example, `str: "gs://bucket/file.csv"` or
`Sequence[str]: ["gs://bucket/file1.csv",
"gs://bucket/file2.csv"]`.
bq_source (str):
A BigQuery URI for the input table. For example,
`bq://project.dataset.table_name`.
project (str):
The name of the Google Cloud project to which this
`TimeSeriesDataset` is uploaded. This overrides the project that
was set by `aiplatform.init`.
location (str):
The Google Cloud region where this dataset is uploaded. This
region overrides the region that was set by `aiplatform.init`.
credentials (auth_credentials.Credentials):
The credentials that are used to upload the `TimeSeriesDataset`.
These credentials override the credentials set by
`aiplatform.init`.
request_metadata (Sequence[Tuple[str, str]]):
Strings that contain metadata that's sent with the request.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your
Vertex AI Tensorboards. The maximum length of a key and of a
value is 64 unicode characters. Labels and keys can contain only
lowercase letters, numeric characters, underscores, and dashes.
International characters are allowed. No more than 64 user
labels can be associated with one Tensorboard (system labels are
excluded). For more information and examples of using labels, see
[Using labels to organize Google Cloud Platform resources](https://goo.gl/xmQnxf).
System reserved label keys are prefixed with
`aiplatform.googleapis.com/` and are immutable.
encryption_spec_key_name (Optional[str]):
Optional. The Cloud KMS resource identifier of the customer
managed encryption key that's used to protect the dataset. The
format of the key is
`projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`.
The key needs to be in the same region as where the compute
resource is created.
If `encryption_spec_key_name` is set, this time series dataset
and all of its sub-resources are secured by this key.
This `encryption_spec_key_name` overrides the
`encryption_spec_key_name` set by `aiplatform.init`.
create_request_timeout (float):
Optional. The number of seconds for the timeout of the create
request.
sync (bool):
If `true`, the `create` method creates a time series dataset
synchronously. If `false`, the `create` method creates a time
series dataset asynchronously.
Returns:
time_series_dataset (TimeSeriesDataset):
An instantiated representation of the managed
`TimeSeriesDataset` resource.
"""
if not display_name:
display_name = cls._generate_display_name()
utils.validate_display_name(display_name)
if labels:
utils.validate_labels(labels)
api_client = cls._instantiate_client(location=location, credentials=credentials)
metadata_schema_uri = schema.dataset.metadata.time_series
datasource = _datasources.create_datasource(
metadata_schema_uri=metadata_schema_uri,
gcs_source=gcs_source,
bq_source=bq_source,
)
return cls._create_and_import(
api_client=api_client,
parent=initializer.global_config.common_location_path(
project=project, location=location
),
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
project=project or initializer.global_config.project,
location=location or initializer.global_config.location,
credentials=credentials or initializer.global_config.credentials,
request_metadata=request_metadata,
labels=labels,
encryption_spec=initializer.global_config.get_encryption_spec(
encryption_spec_key_name=encryption_spec_key_name
),
sync=sync,
create_request_timeout=create_request_timeout,
)
def import_data(self):
raise NotImplementedError(
f"{self.__class__.__name__} class does not support 'import_data'"
)

View File

@@ -0,0 +1,199 @@
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Dict, Optional, Sequence, Tuple, Union
from google.auth import credentials as auth_credentials
from google.cloud.aiplatform import datasets
from google.cloud.aiplatform.datasets import _datasources
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import schema
from google.cloud.aiplatform import utils
class VideoDataset(datasets._Dataset):
"""A managed video dataset resource for Vertex AI.
Use this class to work with a managed video dataset. To create a video
dataset, you need a datasource in CSV format and a schema in YAML format.
The CSV file and the schema are accessed in Cloud Storage buckets.
Use video data for the following objectives:
Classification. For more information, see Classification schema files.
Action recognition. For more information, see Action recognition schema
files. Object tracking. For more information, see Object tracking schema
files. The following code shows you how to create and import a dataset to
train a video classification model. The schema file you use depends on
whether you use your video dataset for action classification, recognition,
or object tracking.
```py
my_dataset = aiplatform.VideoDataset.create(
gcs_source=['gs://path/to/my/dataset.csv'],
import_schema_uri=['gs://aip.schema.dataset.ioformat.video.classification.yaml']
)
```
"""
_supported_metadata_schema_uris: Optional[Tuple[str]] = (
schema.dataset.metadata.video,
)
@classmethod
def create(
cls,
display_name: Optional[str] = None,
gcs_source: Optional[Union[str, Sequence[str]]] = None,
import_schema_uri: Optional[str] = None,
data_item_labels: Optional[Dict] = None,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[auth_credentials.Credentials] = None,
request_metadata: Optional[Sequence[Tuple[str, str]]] = (),
labels: Optional[Dict[str, str]] = None,
encryption_spec_key_name: Optional[str] = None,
sync: bool = True,
create_request_timeout: Optional[float] = None,
) -> "VideoDataset":
"""Creates a new video dataset.
Optionally imports data into the dataset when a source and
`import_schema_uri` are passed in. The following is an example of how
this method is used:
```py
my_dataset = aiplatform.VideoDataset.create(
gcs_source=['gs://path/to/my/dataset.csv'],
import_schema_uri=['gs://aip.schema.dataset.ioformat.video.classification.yaml']
)
```
Args:
display_name (str):
Optional. The user-defined name of the dataset. The name must
contain 128 or fewer UTF-8 characters.
gcs_source (Union[str, Sequence[str]]):
The URI to one or more Google Cloud Storage buckets that contain
your datasets. For example, `str: "gs://bucket/file.csv"` or
`Sequence[str]: ["gs://bucket/file1.csv",
"gs://bucket/file2.csv"]`.
import_schema_uri (str):
A URI for a YAML file stored in Cloud Storage that
describes the import schema used to validate the
dataset. The schema is an
[OpenAPI 3.0.2 Schema](https://tinyurl.com/y538mdwt) object.
data_item_labels (Dict):
Optional. A dictionary of label information. Each dictionary
item contains a label and a label key. Each item in the dataset
includes one dictionary of label information. If a data item is
added or merged into a dataset, and that data item contains an
image that's identical to an image thats already in the
dataset, then the data items are merged. If two identical labels
are detected during the merge, each with a different label key,
then one of the label and label key dictionary items is randomly
chosen to be into the merged data item. Dataset items are
compared using their binary data (bytes), not on their content.
If annotation labels are referenced in a schema specified by the
`import_schema_url` parameter, then the labels in the
`data_item_labels` dictionary are overriden by the annotations.
project (str):
The name of the Google Cloud project to which this
`VideoDataset` is uploaded. This overrides the project that
was set by `aiplatform.init`.
location (str):
The Google Cloud region where this dataset is uploaded. This
region overrides the region that was set by `aiplatform.init`.
credentials (auth_credentials.Credentials):
The credentials that are used to upload the `VideoDataset`.
These credentials override the credentials set by
`aiplatform.init`.
request_metadata (Sequence[Tuple[str, str]]):
Strings that contain metadata that's sent with the request.
labels (Dict[str, str]):
Optional. Labels with user-defined metadata to organize your
Vertex AI Tensorboards. The maximum length of a key and of a
value is 64 unicode characters. Labels and keys can contain only
lowercase letters, numeric characters, underscores, and dashes.
International characters are allowed. No more than 64 user
labels can be associated with one Tensorboard (system labels are
excluded). For more information and examples of using labels, see
[Using labels to organize Google Cloud Platform resources](https://goo.gl/xmQnxf).
System reserved label keys are prefixed with
`aiplatform.googleapis.com/` and are immutable.
encryption_spec_key_name (Optional[str]):
Optional. The Cloud KMS resource identifier of the customer
managed encryption key that's used to protect the dataset. The
format of the key is
`projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`.
The key needs to be in the same region as where the compute
resource is created.
If `encryption_spec_key_name` is set, this `VideoDataset` and
all of its sub-resources are secured by this key.
This `encryption_spec_key_name` overrides the
`encryption_spec_key_name` set by `aiplatform.init`.
sync (bool):
If `true`, the `create` method creates a video dataset
synchronously. If `false`, the `create` mdthod creates a video
dataset asynchronously.
create_request_timeout (float):
Optional. The number of seconds for the timeout of the create
request.
Returns:
video_dataset (VideoDataset):
An instantiated representation of the managed
`VideoDataset` resource.
"""
if not display_name:
display_name = cls._generate_display_name()
utils.validate_display_name(display_name)
if labels:
utils.validate_labels(labels)
api_client = cls._instantiate_client(location=location, credentials=credentials)
metadata_schema_uri = schema.dataset.metadata.video
datasource = _datasources.create_datasource(
metadata_schema_uri=metadata_schema_uri,
import_schema_uri=import_schema_uri,
gcs_source=gcs_source,
data_item_labels=data_item_labels,
)
return cls._create_and_import(
api_client=api_client,
parent=initializer.global_config.common_location_path(
project=project, location=location
),
display_name=display_name,
metadata_schema_uri=metadata_schema_uri,
datasource=datasource,
project=project or initializer.global_config.project,
location=location or initializer.global_config.location,
credentials=credentials or initializer.global_config.credentials,
request_metadata=request_metadata,
labels=labels,
encryption_spec=initializer.global_config.get_encryption_spec(
encryption_spec_key_name=encryption_spec_key_name
),
sync=sync,
create_request_timeout=create_request_timeout,
)