structure saas with tools
This commit is contained in:
@@ -0,0 +1,330 @@
|
||||
# Copyright 2025 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import annotations
|
||||
|
||||
import contextlib
|
||||
from functools import cached_property
|
||||
import logging
|
||||
import sys
|
||||
from typing import AsyncGenerator
|
||||
from typing import cast
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from google.genai import Client
|
||||
from google.genai import types
|
||||
from typing_extensions import override
|
||||
|
||||
from .. import version
|
||||
from .base_llm import BaseLlm
|
||||
from .base_llm_connection import BaseLlmConnection
|
||||
from .gemini_llm_connection import GeminiLlmConnection
|
||||
from .llm_response import LlmResponse
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .llm_request import LlmRequest
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_NEW_LINE = '\n'
|
||||
_EXCLUDED_PART_FIELD = {'inline_data': {'data'}}
|
||||
|
||||
|
||||
class Gemini(BaseLlm):
|
||||
"""Integration for Gemini models.
|
||||
|
||||
Attributes:
|
||||
model: The name of the Gemini model.
|
||||
"""
|
||||
|
||||
model: str = 'gemini-1.5-flash'
|
||||
|
||||
@staticmethod
|
||||
@override
|
||||
def supported_models() -> list[str]:
|
||||
"""Provides the list of supported models.
|
||||
|
||||
Returns:
|
||||
A list of supported models.
|
||||
"""
|
||||
|
||||
return [
|
||||
r'gemini-.*',
|
||||
# fine-tuned vertex endpoint pattern
|
||||
r'projects\/.+\/locations\/.+\/endpoints\/.+',
|
||||
# vertex gemini long name
|
||||
r'projects\/.+\/locations\/.+\/publishers\/google\/models\/gemini.+',
|
||||
]
|
||||
|
||||
async def generate_content_async(
|
||||
self, llm_request: LlmRequest, stream: bool = False
|
||||
) -> AsyncGenerator[LlmResponse, None]:
|
||||
"""Sends a request to the Gemini model.
|
||||
|
||||
Args:
|
||||
llm_request: LlmRequest, the request to send to the Gemini model.
|
||||
stream: bool = False, whether to do streaming call.
|
||||
|
||||
Yields:
|
||||
LlmResponse: The model response.
|
||||
"""
|
||||
|
||||
self._maybe_append_user_content(llm_request)
|
||||
logger.info(
|
||||
'Sending out request, model: %s, backend: %s, stream: %s',
|
||||
llm_request.model,
|
||||
self._api_backend,
|
||||
stream,
|
||||
)
|
||||
logger.info(_build_request_log(llm_request))
|
||||
|
||||
if stream:
|
||||
responses = await self.api_client.aio.models.generate_content_stream(
|
||||
model=llm_request.model,
|
||||
contents=llm_request.contents,
|
||||
config=llm_request.config,
|
||||
)
|
||||
response = None
|
||||
text = ''
|
||||
# for sse, similar as bidi (see receive method in gemini_llm_connecton.py),
|
||||
# we need to mark those text content as partial and after all partial
|
||||
# contents are sent, we send an accumulated event which contains all the
|
||||
# previous partial content. The only difference is bidi rely on
|
||||
# complete_turn flag to detect end while sse depends on finish_reason.
|
||||
async for response in responses:
|
||||
logger.info(_build_response_log(response))
|
||||
llm_response = LlmResponse.create(response)
|
||||
if (
|
||||
llm_response.content
|
||||
and llm_response.content.parts
|
||||
and llm_response.content.parts[0].text
|
||||
):
|
||||
text += llm_response.content.parts[0].text
|
||||
llm_response.partial = True
|
||||
elif text and (
|
||||
not llm_response.content
|
||||
or not llm_response.content.parts
|
||||
# don't yield the merged text event when receiving audio data
|
||||
or not llm_response.content.parts[0].inline_data
|
||||
):
|
||||
yield LlmResponse(
|
||||
content=types.ModelContent(
|
||||
parts=[types.Part.from_text(text=text)],
|
||||
),
|
||||
)
|
||||
text = ''
|
||||
yield llm_response
|
||||
if (
|
||||
text
|
||||
and response
|
||||
and response.candidates
|
||||
and response.candidates[0].finish_reason == types.FinishReason.STOP
|
||||
):
|
||||
yield LlmResponse(
|
||||
content=types.ModelContent(
|
||||
parts=[types.Part.from_text(text=text)],
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
response = await self.api_client.aio.models.generate_content(
|
||||
model=llm_request.model,
|
||||
contents=llm_request.contents,
|
||||
config=llm_request.config,
|
||||
)
|
||||
logger.info(_build_response_log(response))
|
||||
yield LlmResponse.create(response)
|
||||
|
||||
@cached_property
|
||||
def api_client(self) -> Client:
|
||||
"""Provides the api client.
|
||||
|
||||
Returns:
|
||||
The api client.
|
||||
"""
|
||||
return Client(
|
||||
http_options=types.HttpOptions(headers=self._tracking_headers)
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def _api_backend(self) -> str:
|
||||
return 'vertex' if self.api_client.vertexai else 'ml_dev'
|
||||
|
||||
@cached_property
|
||||
def _tracking_headers(self) -> dict[str, str]:
|
||||
framework_label = f'google-adk/{version.__version__}'
|
||||
language_label = 'gl-python/' + sys.version.split()[0]
|
||||
version_header_value = f'{framework_label} {language_label}'
|
||||
tracking_headers = {
|
||||
'x-goog-api-client': version_header_value,
|
||||
'user-agent': version_header_value,
|
||||
}
|
||||
return tracking_headers
|
||||
|
||||
@cached_property
|
||||
def _live_api_client(self) -> Client:
|
||||
if self._api_backend == 'vertex':
|
||||
# use default api version for vertex
|
||||
return Client(
|
||||
http_options=types.HttpOptions(headers=self._tracking_headers)
|
||||
)
|
||||
else:
|
||||
# use v1alpha for ml_dev
|
||||
api_version = 'v1alpha'
|
||||
return Client(
|
||||
http_options=types.HttpOptions(
|
||||
headers=self._tracking_headers, api_version=api_version
|
||||
)
|
||||
)
|
||||
|
||||
@contextlib.asynccontextmanager
|
||||
async def connect(self, llm_request: LlmRequest) -> BaseLlmConnection:
|
||||
"""Connects to the Gemini model and returns an llm connection.
|
||||
|
||||
Args:
|
||||
llm_request: LlmRequest, the request to send to the Gemini model.
|
||||
|
||||
Yields:
|
||||
BaseLlmConnection, the connection to the Gemini model.
|
||||
"""
|
||||
|
||||
llm_request.live_connect_config.system_instruction = types.Content(
|
||||
role='system',
|
||||
parts=[
|
||||
types.Part.from_text(text=llm_request.config.system_instruction)
|
||||
],
|
||||
)
|
||||
llm_request.live_connect_config.tools = llm_request.config.tools
|
||||
async with self._live_api_client.aio.live.connect(
|
||||
model=llm_request.model, config=llm_request.live_connect_config
|
||||
) as live_session:
|
||||
yield GeminiLlmConnection(live_session)
|
||||
|
||||
def _maybe_append_user_content(self, llm_request: LlmRequest):
|
||||
"""Appends a user content, so that model can continue to output.
|
||||
|
||||
Args:
|
||||
llm_request: LlmRequest, the request to send to the Gemini model.
|
||||
"""
|
||||
# If no content is provided, append a user content to hint model response
|
||||
# using system instruction.
|
||||
if not llm_request.contents:
|
||||
llm_request.contents.append(
|
||||
types.Content(
|
||||
role='user',
|
||||
parts=[
|
||||
types.Part(
|
||||
text=(
|
||||
'Handle the requests as specified in the System'
|
||||
' Instruction.'
|
||||
)
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
# Insert a user content to preserve user intent and to avoid empty
|
||||
# model response.
|
||||
if llm_request.contents[-1].role != 'user':
|
||||
llm_request.contents.append(
|
||||
types.Content(
|
||||
role='user',
|
||||
parts=[
|
||||
types.Part(
|
||||
text=(
|
||||
'Continue processing previous requests as instructed.'
|
||||
' Exit or provide a summary if no more outputs are'
|
||||
' needed.'
|
||||
)
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _build_function_declaration_log(
|
||||
func_decl: types.FunctionDeclaration,
|
||||
) -> str:
|
||||
param_str = '{}'
|
||||
if func_decl.parameters and func_decl.parameters.properties:
|
||||
param_str = str({
|
||||
k: v.model_dump(exclude_none=True)
|
||||
for k, v in func_decl.parameters.properties.items()
|
||||
})
|
||||
return_str = 'None'
|
||||
if func_decl.response:
|
||||
return_str = str(func_decl.response.model_dump(exclude_none=True))
|
||||
return f'{func_decl.name}: {param_str} -> {return_str}'
|
||||
|
||||
|
||||
def _build_request_log(req: LlmRequest) -> str:
|
||||
function_decls: list[types.FunctionDeclaration] = cast(
|
||||
list[types.FunctionDeclaration],
|
||||
req.config.tools[0].function_declarations if req.config.tools else [],
|
||||
)
|
||||
function_logs = (
|
||||
[
|
||||
_build_function_declaration_log(func_decl)
|
||||
for func_decl in function_decls
|
||||
]
|
||||
if function_decls
|
||||
else []
|
||||
)
|
||||
contents_logs = [
|
||||
content.model_dump_json(
|
||||
exclude_none=True,
|
||||
exclude={
|
||||
'parts': {
|
||||
i: _EXCLUDED_PART_FIELD for i in range(len(content.parts))
|
||||
}
|
||||
},
|
||||
)
|
||||
for content in req.contents
|
||||
]
|
||||
|
||||
return f"""
|
||||
LLM Request:
|
||||
-----------------------------------------------------------
|
||||
System Instruction:
|
||||
{req.config.system_instruction}
|
||||
-----------------------------------------------------------
|
||||
Contents:
|
||||
{_NEW_LINE.join(contents_logs)}
|
||||
-----------------------------------------------------------
|
||||
Functions:
|
||||
{_NEW_LINE.join(function_logs)}
|
||||
-----------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def _build_response_log(resp: types.GenerateContentResponse) -> str:
|
||||
function_calls_text = []
|
||||
if function_calls := resp.function_calls:
|
||||
for func_call in function_calls:
|
||||
function_calls_text.append(
|
||||
f'name: {func_call.name}, args: {func_call.args}'
|
||||
)
|
||||
return f"""
|
||||
LLM Response:
|
||||
-----------------------------------------------------------
|
||||
Text:
|
||||
{resp.text}
|
||||
-----------------------------------------------------------
|
||||
Function calls:
|
||||
{_NEW_LINE.join(function_calls_text)}
|
||||
-----------------------------------------------------------
|
||||
Raw response:
|
||||
{resp.model_dump_json(exclude_none=True)}
|
||||
-----------------------------------------------------------
|
||||
"""
|
||||
Reference in New Issue
Block a user