structure saas with tools

This commit is contained in:
Davidson Gomes
2025-04-25 15:30:54 -03:00
commit 1aef473937
16434 changed files with 6584257 additions and 0 deletions

View File

@@ -0,0 +1,32 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .base_agent import BaseAgent
from .live_request_queue import LiveRequest
from .live_request_queue import LiveRequestQueue
from .llm_agent import Agent
from .llm_agent import LlmAgent
from .loop_agent import LoopAgent
from .parallel_agent import ParallelAgent
from .run_config import RunConfig
from .sequential_agent import SequentialAgent
__all__ = [
'Agent',
'BaseAgent',
'LlmAgent',
'LoopAgent',
'ParallelAgent',
'SequentialAgent',
]

View File

@@ -0,0 +1,38 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import asyncio
from typing import Optional
from pydantic import BaseModel
from pydantic import ConfigDict
from .live_request_queue import LiveRequestQueue
class ActiveStreamingTool(BaseModel):
"""Manages streaming tool related resources during invocation."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra='forbid',
)
task: Optional[asyncio.Task] = None
"""The active task of this streaming tool."""
stream: Optional[LiveRequestQueue] = None
"""The active (input) streams of this streaming tool."""

View File

@@ -0,0 +1,345 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Any
from typing import AsyncGenerator
from typing import Callable
from typing import final
from typing import Optional
from typing import TYPE_CHECKING
from google.genai import types
from opentelemetry import trace
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import field_validator
from typing_extensions import override
from ..events.event import Event
from .callback_context import CallbackContext
if TYPE_CHECKING:
from .invocation_context import InvocationContext
tracer = trace.get_tracer('gcp.vertex.agent')
BeforeAgentCallback = Callable[[CallbackContext], Optional[types.Content]]
"""Callback signature that is invoked before the agent run.
Args:
callback_context: MUST be named 'callback_context' (enforced).
Returns:
The content to return to the user. When set, the agent run will skipped and
the provided content will be returned to user.
"""
AfterAgentCallback = Callable[[CallbackContext], Optional[types.Content]]
"""Callback signature that is invoked after the agent run.
Args:
callback_context: MUST be named 'callback_context' (enforced).
Returns:
The content to return to the user. When set, the agent run will skipped and
the provided content will be appended to event history as agent response.
"""
class BaseAgent(BaseModel):
"""Base class for all agents in Agent Development Kit."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra='forbid',
)
name: str
"""The agent's name.
Agent name must be a Python identifier and unique within the agent tree.
Agent name cannot be "user", since it's reserved for end-user's input.
"""
description: str = ''
"""Description about the agent's capability.
The model uses this to determine whether to delegate control to the agent.
One-line description is enough and preferred.
"""
parent_agent: Optional[BaseAgent] = Field(default=None, init=False)
"""The parent agent of this agent.
Note that an agent can ONLY be added as sub-agent once.
If you want to add one agent twice as sub-agent, consider to create two agent
instances with identical config, but with different name and add them to the
agent tree.
"""
sub_agents: list[BaseAgent] = Field(default_factory=list)
"""The sub-agents of this agent."""
before_agent_callback: Optional[BeforeAgentCallback] = None
"""Callback signature that is invoked before the agent run.
Args:
callback_context: MUST be named 'callback_context' (enforced).
Returns:
The content to return to the user. When set, the agent run will skipped and
the provided content will be returned to user.
"""
after_agent_callback: Optional[AfterAgentCallback] = None
"""Callback signature that is invoked after the agent run.
Args:
callback_context: MUST be named 'callback_context' (enforced).
Returns:
The content to return to the user. When set, the agent run will skipped and
the provided content will be appended to event history as agent response.
"""
@final
async def run_async(
self,
parent_context: InvocationContext,
) -> AsyncGenerator[Event, None]:
"""Entry method to run an agent via text-based conversation.
Args:
parent_context: InvocationContext, the invocation context of the parent
agent.
Yields:
Event: the events generated by the agent.
"""
with tracer.start_as_current_span(f'agent_run [{self.name}]'):
ctx = self._create_invocation_context(parent_context)
if event := self.__handle_before_agent_callback(ctx):
yield event
if ctx.end_invocation:
return
async for event in self._run_async_impl(ctx):
yield event
if ctx.end_invocation:
return
if event := self.__handle_after_agent_callback(ctx):
yield event
@final
async def run_live(
self,
parent_context: InvocationContext,
) -> AsyncGenerator[Event, None]:
"""Entry method to run an agent via video/audio-based conversation.
Args:
parent_context: InvocationContext, the invocation context of the parent
agent.
Yields:
Event: the events generated by the agent.
"""
with tracer.start_as_current_span(f'agent_run [{self.name}]'):
ctx = self._create_invocation_context(parent_context)
# TODO(hangfei): support before/after_agent_callback
async for event in self._run_live_impl(ctx):
yield event
async def _run_async_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
"""Core logic to run this agent via text-based conversation.
Args:
ctx: InvocationContext, the invocation context for this agent.
Yields:
Event: the events generated by the agent.
"""
raise NotImplementedError(
f'_run_async_impl for {type(self)} is not implemented.'
)
yield # AsyncGenerator requires having at least one yield statement
async def _run_live_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
"""Core logic to run this agent via video/audio-based conversation.
Args:
ctx: InvocationContext, the invocation context for this agent.
Yields:
Event: the events generated by the agent.
"""
raise NotImplementedError(
f'_run_live_impl for {type(self)} is not implemented.'
)
yield # AsyncGenerator requires having at least one yield statement
@property
def root_agent(self) -> BaseAgent:
"""Gets the root agent of this agent."""
root_agent = self
while root_agent.parent_agent is not None:
root_agent = root_agent.parent_agent
return root_agent
def find_agent(self, name: str) -> Optional[BaseAgent]:
"""Finds the agent with the given name in this agent and its descendants.
Args:
name: The name of the agent to find.
Returns:
The agent with the matching name, or None if no such agent is found.
"""
if self.name == name:
return self
return self.find_sub_agent(name)
def find_sub_agent(self, name: str) -> Optional[BaseAgent]:
"""Finds the agent with the given name in this agent's descendants.
Args:
name: The name of the agent to find.
Returns:
The agent with the matching name, or None if no such agent is found.
"""
for sub_agent in self.sub_agents:
if result := sub_agent.find_agent(name):
return result
return None
def _create_invocation_context(
self, parent_context: InvocationContext
) -> InvocationContext:
"""Creates a new invocation context for this agent."""
invocation_context = parent_context.model_copy(update={'agent': self})
if parent_context.branch:
invocation_context.branch = f'{parent_context.branch}.{self.name}'
return invocation_context
def __handle_before_agent_callback(
self, ctx: InvocationContext
) -> Optional[Event]:
"""Runs the before_agent_callback if it exists.
Returns:
Optional[Event]: an event if callback provides content or changed state.
"""
ret_event = None
if not isinstance(self.before_agent_callback, Callable):
return ret_event
callback_context = CallbackContext(ctx)
before_agent_callback_content = self.before_agent_callback(
callback_context=callback_context
)
if before_agent_callback_content:
ret_event = Event(
invocation_id=ctx.invocation_id,
author=self.name,
branch=ctx.branch,
content=before_agent_callback_content,
actions=callback_context._event_actions,
)
ctx.end_invocation = True
return ret_event
if callback_context.state.has_delta():
ret_event = Event(
invocation_id=ctx.invocation_id,
author=self.name,
branch=ctx.branch,
actions=callback_context._event_actions,
)
return ret_event
def __handle_after_agent_callback(
self, invocation_context: InvocationContext
) -> Optional[Event]:
"""Runs the after_agent_callback if it exists.
Returns:
Optional[Event]: an event if callback provides content or changed state.
"""
ret_event = None
if not isinstance(self.after_agent_callback, Callable):
return ret_event
callback_context = CallbackContext(invocation_context)
after_agent_callback_content = self.after_agent_callback(
callback_context=callback_context
)
if after_agent_callback_content or callback_context.state.has_delta():
ret_event = Event(
invocation_id=invocation_context.invocation_id,
author=self.name,
branch=invocation_context.branch,
content=after_agent_callback_content,
actions=callback_context._event_actions,
)
return ret_event
@override
def model_post_init(self, __context: Any) -> None:
self.__set_parent_agent_for_sub_agents()
@field_validator('name', mode='after')
@classmethod
def __validate_name(cls, value: str):
if not value.isidentifier():
raise ValueError(
f'Found invalid agent name: `{value}`.'
' Agent name must be a valid identifier. It should start with a'
' letter (a-z, A-Z) or an underscore (_), and can only contain'
' letters, digits (0-9), and underscores.'
)
if value == 'user':
raise ValueError(
"Agent name cannot be `user`. `user` is reserved for end-user's"
' input.'
)
return value
def __set_parent_agent_for_sub_agents(self) -> BaseAgent:
for sub_agent in self.sub_agents:
if sub_agent.parent_agent is not None:
raise ValueError(
f'Agent `{sub_agent.name}` already has a parent agent, current'
f' parent: `{sub_agent.parent_agent.name}`, trying to add:'
f' `{self.name}`'
)
sub_agent.parent_agent = self
return self

View File

@@ -0,0 +1,111 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Optional, TYPE_CHECKING
from typing_extensions import override
from .readonly_context import ReadonlyContext
if TYPE_CHECKING:
from google.genai import types
from ..events.event_actions import EventActions
from ..sessions.state import State
from .invocation_context import InvocationContext
class CallbackContext(ReadonlyContext):
"""The context of various callbacks within an agent run."""
def __init__(
self,
invocation_context: InvocationContext,
*,
event_actions: Optional[EventActions] = None,
) -> None:
super().__init__(invocation_context)
from ..events.event_actions import EventActions
from ..sessions.state import State
# TODO(weisun): make this public for Agent Development Kit, but private for
# users.
self._event_actions = event_actions or EventActions()
self._state = State(
value=invocation_context.session.state,
delta=self._event_actions.state_delta,
)
@property
@override
def state(self) -> State:
"""The delta-aware state of the current session.
For any state change, you can mutate this object directly,
e.g. `ctx.state['foo'] = 'bar'`
"""
return self._state
@property
def user_content(self) -> Optional[types.Content]:
"""The user content that started this invocation. READONLY field."""
return self._invocation_context.user_content
def load_artifact(
self, filename: str, version: Optional[int] = None
) -> Optional[types.Part]:
"""Loads an artifact attached to the current session.
Args:
filename: The filename of the artifact.
version: The version of the artifact. If None, the latest version will be
returned.
Returns:
The artifact.
"""
if self._invocation_context.artifact_service is None:
raise ValueError("Artifact service is not initialized.")
return self._invocation_context.artifact_service.load_artifact(
app_name=self._invocation_context.app_name,
user_id=self._invocation_context.user_id,
session_id=self._invocation_context.session.id,
filename=filename,
version=version,
)
def save_artifact(self, filename: str, artifact: types.Part) -> int:
"""Saves an artifact and records it as delta for the current session.
Args:
filename: The filename of the artifact.
artifact: The artifact to save.
Returns:
The version of the artifact.
"""
if self._invocation_context.artifact_service is None:
raise ValueError("Artifact service is not initialized.")
version = self._invocation_context.artifact_service.save_artifact(
app_name=self._invocation_context.app_name,
user_id=self._invocation_context.user_id,
session_id=self._invocation_context.session.id,
filename=filename,
artifact=artifact,
)
self._event_actions.artifact_delta[filename] = version
return version

View File

@@ -0,0 +1,181 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Optional
import uuid
from google.genai import types
from pydantic import BaseModel
from pydantic import ConfigDict
from ..artifacts.base_artifact_service import BaseArtifactService
from ..memory.base_memory_service import BaseMemoryService
from ..sessions.base_session_service import BaseSessionService
from ..sessions.session import Session
from .active_streaming_tool import ActiveStreamingTool
from .base_agent import BaseAgent
from .live_request_queue import LiveRequestQueue
from .run_config import RunConfig
from .transcription_entry import TranscriptionEntry
class LlmCallsLimitExceededError(Exception):
"""Error thrown when the number of LLM calls exceed the limit."""
class _InvocationCostManager(BaseModel):
"""A container to keep track of the cost of invocation.
While we don't expected the metrics captured here to be a direct
representatative of monetary cost incurred in executing the current
invocation, but they, in someways have an indirect affect.
"""
_number_of_llm_calls: int = 0
"""A counter that keeps track of number of llm calls made."""
def increment_and_enforce_llm_calls_limit(
self, run_config: Optional[RunConfig]
):
"""Increments _number_of_llm_calls and enforces the limit."""
# We first increment the counter and then check the conditions.
self._number_of_llm_calls += 1
if (
run_config
and run_config.max_llm_calls > 0
and self._number_of_llm_calls > run_config.max_llm_calls
):
# We only enforce the limit if the limit is a positive number.
raise LlmCallsLimitExceededError(
"Max number of llm calls limit of"
f" `{run_config.max_llm_calls}` exceeded"
)
class InvocationContext(BaseModel):
"""An invocation context represents the data of a single invocation of an agent.
An invocation:
1. Starts with a user message and ends with a final response.
2. Can contain one or multiple agent calls.
3. Is handled by runner.run_async().
An invocation runs an agent until it does not request to transfer to another
agent.
An agent call:
1. Is handled by agent.run().
2. Ends when agent.run() ends.
An LLM agent call is an agent with a BaseLLMFlow.
An LLM agent call can contain one or multiple steps.
An LLM agent runs steps in a loop until:
1. A final response is generated.
2. The agent transfers to another agent.
3. The end_invocation is set to true by any callbacks or tools.
A step:
1. Calls the LLM only once and yields its response.
2. Calls the tools and yields their responses if requested.
The summarization of the function response is considered another step, since
it is another llm call.
A step ends when it's done calling llm and tools, or if the end_invocation
is set to true at any time.
```
┌─────────────────────── invocation ──────────────────────────┐
┌──────────── llm_agent_call_1 ────────────┐ ┌─ agent_call_2 ─┐
┌──── step_1 ────────┐ ┌───── step_2 ──────┐
[call_llm] [call_tool] [call_llm] [transfer]
```
"""
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra="forbid",
)
artifact_service: Optional[BaseArtifactService] = None
session_service: BaseSessionService
memory_service: Optional[BaseMemoryService] = None
invocation_id: str
"""The id of this invocation context. Readonly."""
branch: Optional[str] = None
"""The branch of the invocation context.
The format is like agent_1.agent_2.agent_3, where agent_1 is the parent of
agent_2, and agent_2 is the parent of agent_3.
Branch is used when multiple sub-agents shouldn't see their peer agents'
conversation history.
"""
agent: BaseAgent
"""The current agent of this invocation context. Readonly."""
user_content: Optional[types.Content] = None
"""The user content that started this invocation. Readonly."""
session: Session
"""The current session of this invocation context. Readonly."""
end_invocation: bool = False
"""Whether to end this invocation.
Set to True in callbacks or tools to terminate this invocation."""
live_request_queue: Optional[LiveRequestQueue] = None
"""The queue to receive live requests."""
active_streaming_tools: Optional[dict[str, ActiveStreamingTool]] = None
"""The running streaming tools of this invocation."""
transcription_cache: Optional[list[TranscriptionEntry]] = None
"""Caches necessary, data audio or contents, that are needed by transcription."""
run_config: Optional[RunConfig] = None
"""Configurations for live agents under this invocation."""
_invocation_cost_manager: _InvocationCostManager = _InvocationCostManager()
"""A container to keep track of different kinds of costs incurred as a part
of this invocation.
"""
def increment_llm_call_count(
self,
):
"""Tracks number of llm calls made.
Raises:
LlmCallsLimitExceededError: If number of llm calls made exceed the set
threshold.
"""
self._invocation_cost_manager.increment_and_enforce_llm_calls_limit(
self.run_config
)
@property
def app_name(self) -> str:
return self.session.app_name
@property
def user_id(self) -> str:
return self.session.user_id
def new_invocation_context_id() -> str:
return "e-" + str(uuid.uuid4())

View File

@@ -0,0 +1,140 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import AsyncGenerator
from typing import Union
from google.genai import types
from langchain_core.messages import AIMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import SystemMessage
from langchain_core.runnables.config import RunnableConfig
from langgraph.graph.graph import CompiledGraph
from pydantic import ConfigDict
from typing_extensions import override
from ..events.event import Event
from .base_agent import BaseAgent
from .invocation_context import InvocationContext
def _get_last_human_messages(events: list[Event]) -> list[HumanMessage]:
"""Extracts last human messages from given list of events.
Args:
events: the list of events
Returns:
list of last human messages
"""
messages = []
for event in reversed(events):
if messages and event.author != 'user':
break
if event.author == 'user' and event.content and event.content.parts:
messages.append(HumanMessage(content=event.content.parts[0].text))
return list(reversed(messages))
class LangGraphAgent(BaseAgent):
"""Currently a concept implementation, supports single and multi-turn."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
graph: CompiledGraph
instruction: str = ''
@override
async def _run_async_impl(
self,
ctx: InvocationContext,
) -> AsyncGenerator[Event, None]:
# Needed for langgraph checkpointer (for subsequent invocations; multi-turn)
config: RunnableConfig = {'configurable': {'thread_id': ctx.session.id}}
# Add instruction as SystemMessage if graph state is empty
current_graph_state = self.graph.get_state(config)
graph_messages = (
current_graph_state.values.get('messages', [])
if current_graph_state.values
else []
)
messages = (
[SystemMessage(content=self.instruction)]
if self.instruction and not graph_messages
else []
)
# Add events to messages (evaluating the memory used; parent agent vs checkpointer)
messages += self._get_messages(ctx.session.events)
# Use the Runnable
final_state = self.graph.invoke({'messages': messages}, config)
result = final_state['messages'][-1].content
result_event = Event(
invocation_id=ctx.invocation_id,
author=self.name,
branch=ctx.branch,
content=types.Content(
role='model',
parts=[types.Part.from_text(text=result)],
),
)
yield result_event
def _get_messages(
self, events: list[Event]
) -> list[Union[HumanMessage, AIMessage]]:
"""Extracts messages from given list of events.
If the developer provides their own memory within langgraph, we return the
last user messages only. Otherwise, we return all messages between the user
and the agent.
Args:
events: the list of events
Returns:
list of messages
"""
if self.graph.checkpointer:
return _get_last_human_messages(events)
else:
return self._get_conversation_with_agent(events)
def _get_conversation_with_agent(
self, events: list[Event]
) -> list[Union[HumanMessage, AIMessage]]:
"""Extracts messages from given list of events.
Args:
events: the list of events
Returns:
list of messages
"""
messages = []
for event in events:
if not event.content or not event.content.parts:
continue
if event.author == 'user':
messages.append(HumanMessage(content=event.content.parts[0].text))
elif event.author == self.name:
messages.append(AIMessage(content=event.content.parts[0].text))
return messages

View File

@@ -0,0 +1,64 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
from typing import Optional
from google.genai import types
from pydantic import BaseModel
from pydantic import ConfigDict
class LiveRequest(BaseModel):
"""Request send to live agents."""
model_config = ConfigDict(ser_json_bytes='base64', val_json_bytes='base64')
content: Optional[types.Content] = None
"""If set, send the content to the model in turn-by-turn mode."""
blob: Optional[types.Blob] = None
"""If set, send the blob to the model in realtime mode."""
close: bool = False
"""If set, close the queue. queue.shutdown() is only supported in Python 3.13+."""
class LiveRequestQueue:
"""Queue used to send LiveRequest in a live(bidirectional streaming) way."""
def __init__(self):
# Ensure there's an event loop available in this thread
try:
asyncio.get_running_loop()
except RuntimeError:
# No running loop, create one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Now create the queue (it will use the event loop we just ensured exists)
self._queue = asyncio.Queue()
def close(self):
self._queue.put_nowait(LiveRequest(close=True))
def send_content(self, content: types.Content):
self._queue.put_nowait(LiveRequest(content=content))
def send_realtime(self, blob: types.Blob):
self._queue.put_nowait(LiveRequest(blob=blob))
def send(self, req: LiveRequest):
self._queue.put_nowait(req)
async def get(self) -> LiveRequest:
return await self._queue.get()

View File

@@ -0,0 +1,376 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import logging
from typing import Any
from typing import AsyncGenerator
from typing import Callable
from typing import Literal
from typing import Optional
from typing import Union
from google.genai import types
from pydantic import BaseModel
from pydantic import Field
from pydantic import field_validator
from pydantic import model_validator
from typing_extensions import override
from typing_extensions import TypeAlias
from ..code_executors.base_code_executor import BaseCodeExecutor
from ..events.event import Event
from ..examples.base_example_provider import BaseExampleProvider
from ..examples.example import Example
from ..flows.llm_flows.auto_flow import AutoFlow
from ..flows.llm_flows.base_llm_flow import BaseLlmFlow
from ..flows.llm_flows.single_flow import SingleFlow
from ..models.base_llm import BaseLlm
from ..models.llm_request import LlmRequest
from ..models.llm_response import LlmResponse
from ..models.registry import LLMRegistry
from ..planners.base_planner import BasePlanner
from ..tools.base_tool import BaseTool
from ..tools.function_tool import FunctionTool
from ..tools.tool_context import ToolContext
from .base_agent import BaseAgent
from .callback_context import CallbackContext
from .invocation_context import InvocationContext
from .readonly_context import ReadonlyContext
logger = logging.getLogger(__name__)
BeforeModelCallback: TypeAlias = Callable[
[CallbackContext, LlmRequest], Optional[LlmResponse]
]
AfterModelCallback: TypeAlias = Callable[
[CallbackContext, LlmResponse],
Optional[LlmResponse],
]
BeforeToolCallback: TypeAlias = Callable[
[BaseTool, dict[str, Any], ToolContext],
Optional[dict],
]
AfterToolCallback: TypeAlias = Callable[
[BaseTool, dict[str, Any], ToolContext, dict],
Optional[dict],
]
InstructionProvider: TypeAlias = Callable[[ReadonlyContext], str]
ToolUnion: TypeAlias = Union[Callable, BaseTool]
ExamplesUnion = Union[list[Example], BaseExampleProvider]
def _convert_tool_union_to_tool(
tool_union: ToolUnion,
) -> BaseTool:
return (
tool_union
if isinstance(tool_union, BaseTool)
else FunctionTool(tool_union)
)
class LlmAgent(BaseAgent):
"""LLM-based Agent."""
model: Union[str, BaseLlm] = ''
"""The model to use for the agent.
When not set, the agent will inherit the model from its ancestor.
"""
instruction: Union[str, InstructionProvider] = ''
"""Instructions for the LLM model, guiding the agent's behavior."""
global_instruction: Union[str, InstructionProvider] = ''
"""Instructions for all the agents in the entire agent tree.
global_instruction ONLY takes effect in root agent.
For example: use global_instruction to make all agents have a stable identity
or personality.
"""
tools: list[ToolUnion] = Field(default_factory=list)
"""Tools available to this agent."""
generate_content_config: Optional[types.GenerateContentConfig] = None
"""The additional content generation configurations.
NOTE: not all fields are usable, e.g. tools must be configured via `tools`,
thinking_config must be configured via `planner` in LlmAgent.
For example: use this config to adjust model temperature, configure safety
settings, etc.
"""
# LLM-based agent transfer configs - Start
disallow_transfer_to_parent: bool = False
"""Disallows LLM-controlled transferring to the parent agent."""
disallow_transfer_to_peers: bool = False
"""Disallows LLM-controlled transferring to the peer agents."""
# LLM-based agent transfer configs - End
include_contents: Literal['default', 'none'] = 'default'
"""Whether to include contents in the model request.
When set to 'none', the model request will not include any contents, such as
user messages, tool results, etc.
"""
# Controlled input/output configurations - Start
input_schema: Optional[type[BaseModel]] = None
"""The input schema when agent is used as a tool."""
output_schema: Optional[type[BaseModel]] = None
"""The output schema when agent replies.
NOTE: when this is set, agent can ONLY reply and CANNOT use any tools, such as
function tools, RAGs, agent transfer, etc.
"""
output_key: Optional[str] = None
"""The key in session state to store the output of the agent.
Typically use cases:
- Extracts agent reply for later use, such as in tools, callbacks, etc.
- Connects agents to coordinate with each other.
"""
# Controlled input/output configurations - End
# Advance features - Start
planner: Optional[BasePlanner] = None
"""Instructs the agent to make a plan and execute it step by step.
NOTE: to use model's built-in thinking features, set the `thinking_config`
field in `google.adk.planners.built_in_planner`.
"""
code_executor: Optional[BaseCodeExecutor] = None
"""Allow agent to execute code blocks from model responses using the provided
CodeExecutor.
Check out available code executions in `google.adk.code_executor` package.
NOTE: to use model's built-in code executor, don't set this field, add
`google.adk.tools.built_in_code_execution` to tools instead.
"""
# Advance features - End
# TODO: remove below fields after migration. - Start
# These fields are added back for easier migration.
examples: Optional[ExamplesUnion] = None
# TODO: remove above fields after migration. - End
# Callbacks - Start
before_model_callback: Optional[BeforeModelCallback] = None
"""Called before calling the LLM.
Args:
callback_context: CallbackContext,
llm_request: LlmRequest, The raw model request. Callback can mutate the
request.
Returns:
The content to return to the user. When present, the model call will be
skipped and the provided content will be returned to user.
"""
after_model_callback: Optional[AfterModelCallback] = None
"""Called after calling LLM.
Args:
callback_context: CallbackContext,
llm_response: LlmResponse, the actual model response.
Returns:
The content to return to the user. When present, the actual model response
will be ignored and the provided content will be returned to user.
"""
before_tool_callback: Optional[BeforeToolCallback] = None
"""Called before the tool is called.
Args:
tool: The tool to be called.
args: The arguments to the tool.
tool_context: ToolContext,
Returns:
The tool response. When present, the returned tool response will be used and
the framework will skip calling the actual tool.
"""
after_tool_callback: Optional[AfterToolCallback] = None
"""Called after the tool is called.
Args:
tool: The tool to be called.
args: The arguments to the tool.
tool_context: ToolContext,
tool_response: The response from the tool.
Returns:
When present, the returned dict will be used as tool result.
"""
# Callbacks - End
@override
async def _run_async_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
async for event in self._llm_flow.run_async(ctx):
self.__maybe_save_output_to_state(event)
yield event
@override
async def _run_live_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
async for event in self._llm_flow.run_live(ctx):
self.__maybe_save_output_to_state(event)
yield event
if ctx.end_invocation:
return
@property
def canonical_model(self) -> BaseLlm:
"""The resolved self.model field as BaseLlm.
This method is only for use by Agent Development Kit.
"""
if isinstance(self.model, BaseLlm):
return self.model
elif self.model: # model is non-empty str
return LLMRegistry.new_llm(self.model)
else: # find model from ancestors.
ancestor_agent = self.parent_agent
while ancestor_agent is not None:
if isinstance(ancestor_agent, LlmAgent):
return ancestor_agent.canonical_model
ancestor_agent = ancestor_agent.parent_agent
raise ValueError(f'No model found for {self.name}.')
def canonical_instruction(self, ctx: ReadonlyContext) -> str:
"""The resolved self.instruction field to construct instruction for this agent.
This method is only for use by Agent Development Kit.
"""
if isinstance(self.instruction, str):
return self.instruction
else:
return self.instruction(ctx)
def canonical_global_instruction(self, ctx: ReadonlyContext) -> str:
"""The resolved self.instruction field to construct global instruction.
This method is only for use by Agent Development Kit.
"""
if isinstance(self.global_instruction, str):
return self.global_instruction
else:
return self.global_instruction(ctx)
@property
def canonical_tools(self) -> list[BaseTool]:
"""The resolved self.tools field as a list of BaseTool.
This method is only for use by Agent Development Kit.
"""
return [_convert_tool_union_to_tool(tool) for tool in self.tools]
@property
def _llm_flow(self) -> BaseLlmFlow:
if (
self.disallow_transfer_to_parent
and self.disallow_transfer_to_peers
and not self.sub_agents
):
return SingleFlow()
else:
return AutoFlow()
def __maybe_save_output_to_state(self, event: Event):
"""Saves the model output to state if needed."""
if (
self.output_key
and event.is_final_response()
and event.content
and event.content.parts
):
result = ''.join(
[part.text if part.text else '' for part in event.content.parts]
)
if self.output_schema:
result = self.output_schema.model_validate_json(result).model_dump(
exclude_none=True
)
event.actions.state_delta[self.output_key] = result
@model_validator(mode='after')
def __model_validator_after(self) -> LlmAgent:
self.__check_output_schema()
return self
def __check_output_schema(self):
if not self.output_schema:
return
if (
not self.disallow_transfer_to_parent
or not self.disallow_transfer_to_peers
):
logger.warning(
'Invalid config for agent %s: output_schema cannot co-exist with'
' agent transfer configurations. Setting'
' disallow_transfer_to_parent=True, disallow_transfer_to_peers=True',
self.name,
)
self.disallow_transfer_to_parent = True
self.disallow_transfer_to_peers = True
if self.sub_agents:
raise ValueError(
f'Invalid config for agent {self.name}: if output_schema is set,'
' sub_agents must be empty to disable agent transfer.'
)
if self.tools:
raise ValueError(
f'Invalid config for agent {self.name}: if output_schema is set,'
' tools must be empty'
)
@field_validator('generate_content_config', mode='after')
@classmethod
def __validate_generate_content_config(
cls, generate_content_config: Optional[types.GenerateContentConfig]
) -> types.GenerateContentConfig:
if not generate_content_config:
return types.GenerateContentConfig()
if generate_content_config.thinking_config:
raise ValueError('Thinking config should be set via LlmAgent.planner.')
if generate_content_config.tools:
raise ValueError('All tools must be set via LlmAgent.tools.')
if generate_content_config.system_instruction:
raise ValueError(
'System instruction must be set via LlmAgent.instruction.'
)
if generate_content_config.response_schema:
raise ValueError(
'Response schema must be set via LlmAgent.output_schema.'
)
return generate_content_config
Agent: TypeAlias = LlmAgent

View File

@@ -0,0 +1,62 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loop agent implementation."""
from __future__ import annotations
from typing import AsyncGenerator
from typing import Optional
from typing_extensions import override
from ..agents.invocation_context import InvocationContext
from ..events.event import Event
from .base_agent import BaseAgent
class LoopAgent(BaseAgent):
"""A shell agent that run its sub-agents in a loop.
When sub-agent generates an event with escalate or max_iterations are
reached, the loop agent will stop.
"""
max_iterations: Optional[int] = None
"""The maximum number of iterations to run the loop agent.
If not set, the loop agent will run indefinitely until a sub-agent
escalates.
"""
@override
async def _run_async_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
times_looped = 0
while not self.max_iterations or times_looped < self.max_iterations:
for sub_agent in self.sub_agents:
async for event in sub_agent.run_async(ctx):
yield event
if event.actions.escalate:
return
times_looped += 1
return
@override
async def _run_live_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
raise NotImplementedError('The behavior for run_live is not defined yet.')
yield # AsyncGenerator requires having at least one yield statement

View File

@@ -0,0 +1,96 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parallel agent implementation."""
from __future__ import annotations
import asyncio
from typing import AsyncGenerator
from typing_extensions import override
from ..agents.invocation_context import InvocationContext
from ..events.event import Event
from .base_agent import BaseAgent
def _set_branch_for_current_agent(
current_agent: BaseAgent, invocation_context: InvocationContext
):
invocation_context.branch = (
f"{invocation_context.branch}.{current_agent.name}"
if invocation_context.branch
else current_agent.name
)
async def _merge_agent_run(
agent_runs: list[AsyncGenerator[Event, None]],
) -> AsyncGenerator[Event, None]:
"""Merges the agent run event generator.
This implementation guarantees for each agent, it won't move on until the
generated event is processed by upstream runner.
Args:
agent_runs: A list of async generators that yield events from each agent.
Yields:
Event: The next event from the merged generator.
"""
tasks = [
asyncio.create_task(events_for_one_agent.__anext__())
for events_for_one_agent in agent_runs
]
pending_tasks = set(tasks)
while pending_tasks:
done, pending_tasks = await asyncio.wait(
pending_tasks, return_when=asyncio.FIRST_COMPLETED
)
for task in done:
try:
yield task.result()
# Find the generator that produced this event and move it on.
for i, original_task in enumerate(tasks):
if task == original_task:
new_task = asyncio.create_task(agent_runs[i].__anext__())
tasks[i] = new_task
pending_tasks.add(new_task)
break # stop iterating once found
except StopAsyncIteration:
continue
class ParallelAgent(BaseAgent):
"""A shell agent that run its sub-agents in parallel in isolated manner.
This approach is beneficial for scenarios requiring multiple perspectives or
attempts on a single task, such as:
- Running different algorithms simultaneously.
- Generating multiple responses for review by a subsequent evaluation agent.
"""
@override
async def _run_async_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
_set_branch_for_current_agent(self, ctx)
agent_runs = [agent.run_async(ctx) for agent in self.sub_agents]
async for event in _merge_agent_run(agent_runs):
yield event

View File

@@ -0,0 +1,46 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from types import MappingProxyType
from typing import Any
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from .invocation_context import InvocationContext
class ReadonlyContext:
def __init__(
self,
invocation_context: InvocationContext,
) -> None:
self._invocation_context = invocation_context
@property
def invocation_id(self) -> str:
"""The current invocation id."""
return self._invocation_context.invocation_id
@property
def agent_name(self) -> str:
"""The name of the agent that is currently running."""
return self._invocation_context.agent.name
@property
def state(self) -> MappingProxyType[str, Any]:
"""The state of the current session. READONLY field."""
return MappingProxyType(self._invocation_context.session.state)

View File

@@ -0,0 +1,50 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import AsyncGenerator
from pydantic import Field
import requests
from typing_extensions import override
from ..events.event import Event
from .base_agent import BaseAgent
from .invocation_context import InvocationContext
class RemoteAgent(BaseAgent):
"""Experimental, do not use."""
url: str
sub_agents: list[BaseAgent] = Field(
default_factory=list, init=False, frozen=True
)
"""Sub-agent is disabled in RemoteAgent."""
@override
async def _run_async_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
data = {
'invocation_id': ctx.invocation_id,
'session': ctx.session.model_dump(exclude_none=True),
}
events = requests.post(self.url, data=json.dumps(data), timeout=120)
events.raise_for_status()
for event in events.json():
e = Event.model_validate(event)
e.author = self.name
yield e

View File

@@ -0,0 +1,91 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from enum import Enum
import logging
import sys
from typing import Optional
from google.genai import types
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import field_validator
logger = logging.getLogger(__name__)
class StreamingMode(Enum):
NONE = None
SSE = 'sse'
BIDI = 'bidi'
class RunConfig(BaseModel):
"""Configs for runtime behavior of agents."""
model_config = ConfigDict(
extra='forbid',
)
speech_config: Optional[types.SpeechConfig] = None
"""Speech configuration for the live agent."""
response_modalities: Optional[list[str]] = None
"""The output modalities. If not set, it's default to AUDIO."""
save_input_blobs_as_artifacts: bool = False
"""Whether or not to save the input blobs as artifacts."""
support_cfc: bool = False
"""
Whether to support CFC (Compositional Function Calling). Only applicable for
StreamingMode.SSE. If it's true. the LIVE API will be invoked. Since only LIVE
API supports CFC
.. warning::
This feature is **experimental** and its API or behavior may change
in future releases.
"""
streaming_mode: StreamingMode = StreamingMode.NONE
"""Streaming mode, None or StreamingMode.SSE or StreamingMode.BIDI."""
output_audio_transcription: Optional[types.AudioTranscriptionConfig] = None
"""Output transcription for live agents with audio response."""
max_llm_calls: int = 500
"""
A limit on the total number of llm calls for a given run.
Valid Values:
- More than 0 and less than sys.maxsize: The bound on the number of llm
calls is enforced, if the value is set in this range.
- Less than or equal to 0: This allows for unbounded number of llm calls.
"""
@field_validator('max_llm_calls', mode='after')
@classmethod
def validate_max_llm_calls(cls, value: int) -> int:
if value == sys.maxsize:
raise ValueError(f'max_llm_calls should be less than {sys.maxsize}.')
elif value <= 0:
logger.warning(
'max_llm_calls is less than or equal to 0. This will result in'
' no enforcement on total number of llm calls that will be made for a'
' run. This may not be ideal, as this could result in a never'
' ending communication between the model and the agent in certain'
' cases.',
)
return value

View File

@@ -0,0 +1,45 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sequential agent implementation."""
from __future__ import annotations
from typing import AsyncGenerator
from typing_extensions import override
from ..agents.invocation_context import InvocationContext
from ..events.event import Event
from .base_agent import BaseAgent
class SequentialAgent(BaseAgent):
"""A shell agent that run its sub-agents in sequence."""
@override
async def _run_async_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
for sub_agent in self.sub_agents:
async for event in sub_agent.run_async(ctx):
yield event
@override
async def _run_live_impl(
self, ctx: InvocationContext
) -> AsyncGenerator[Event, None]:
for sub_agent in self.sub_agents:
async for event in sub_agent.run_live(ctx):
yield event

View File

@@ -0,0 +1,34 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
from google.genai import types
from pydantic import BaseModel
from pydantic import ConfigDict
class TranscriptionEntry(BaseModel):
"""Store the data that can be used for transcription."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra='forbid',
)
role: str
"""The role that created this data, typically "user" or "model"""
data: Union[types.Blob, types.Content]
"""The data that can be used for transcription"""