mirror of
https://github.com/EvolutionAPI/adk-python.git
synced 2025-07-14 09:51:25 -06:00
306 lines
8.9 KiB
Python
306 lines
8.9 KiB
Python
# Copyright 2025 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
from unittest import mock
|
|
|
|
from google.adk import version as adk_version
|
|
from google.adk.models.gemini_llm_connection import GeminiLlmConnection
|
|
from google.adk.models.google_llm import Gemini
|
|
from google.adk.models.llm_request import LlmRequest
|
|
from google.adk.models.llm_response import LlmResponse
|
|
from google.genai import types
|
|
from google.genai import version as genai_version
|
|
from google.genai.types import Content
|
|
from google.genai.types import Part
|
|
import pytest
|
|
|
|
|
|
@pytest.fixture
|
|
def generate_content_response():
|
|
return types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model",
|
|
parts=[Part.from_text(text="Hello, how can I help you?")],
|
|
),
|
|
finish_reason=types.FinishReason.STOP,
|
|
)
|
|
]
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def gemini_llm():
|
|
return Gemini(model="gemini-1.5-flash")
|
|
|
|
|
|
@pytest.fixture
|
|
def llm_request():
|
|
return LlmRequest(
|
|
model="gemini-1.5-flash",
|
|
contents=[Content(role="user", parts=[Part.from_text(text="Hello")])],
|
|
config=types.GenerateContentConfig(
|
|
temperature=0.1,
|
|
response_modalities=[types.Modality.TEXT],
|
|
system_instruction="You are a helpful assistant",
|
|
),
|
|
)
|
|
|
|
|
|
def test_supported_models():
|
|
models = Gemini.supported_models()
|
|
assert len(models) == 3
|
|
assert models[0] == r"gemini-.*"
|
|
assert models[1] == r"projects\/.+\/locations\/.+\/endpoints\/.+"
|
|
assert (
|
|
models[2]
|
|
== r"projects\/.+\/locations\/.+\/publishers\/google\/models\/gemini.+"
|
|
)
|
|
|
|
|
|
def test_client_version_header():
|
|
model = Gemini(model="gemini-1.5-flash")
|
|
client = model.api_client
|
|
adk_header = (
|
|
f"google-adk/{adk_version.__version__} gl-python/{sys.version.split()[0]}"
|
|
)
|
|
genai_header = (
|
|
f"google-genai-sdk/{genai_version.__version__} gl-python/{sys.version.split()[0]} "
|
|
)
|
|
expected_header = genai_header + adk_header
|
|
|
|
assert (
|
|
expected_header
|
|
in client._api_client._http_options.headers["x-goog-api-client"]
|
|
)
|
|
assert (
|
|
expected_header in client._api_client._http_options.headers["user-agent"]
|
|
)
|
|
|
|
|
|
def test_maybe_append_user_content(gemini_llm, llm_request):
|
|
# Test with user content already present
|
|
gemini_llm._maybe_append_user_content(llm_request)
|
|
assert len(llm_request.contents) == 1
|
|
|
|
# Test with model content as the last message
|
|
llm_request.contents.append(
|
|
Content(role="model", parts=[Part.from_text(text="Response")])
|
|
)
|
|
gemini_llm._maybe_append_user_content(llm_request)
|
|
assert len(llm_request.contents) == 3
|
|
assert llm_request.contents[-1].role == "user"
|
|
assert "Continue processing" in llm_request.contents[-1].parts[0].text
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_generate_content_async(
|
|
gemini_llm, llm_request, generate_content_response
|
|
):
|
|
with mock.patch.object(gemini_llm, "api_client") as mock_client:
|
|
# Create a mock coroutine that returns the generate_content_response
|
|
async def mock_coro():
|
|
return generate_content_response
|
|
|
|
# Assign the coroutine to the mocked method
|
|
mock_client.aio.models.generate_content.return_value = mock_coro()
|
|
|
|
responses = [
|
|
resp
|
|
async for resp in gemini_llm.generate_content_async(
|
|
llm_request, stream=False
|
|
)
|
|
]
|
|
|
|
assert len(responses) == 1
|
|
assert isinstance(responses[0], LlmResponse)
|
|
assert responses[0].content.parts[0].text == "Hello, how can I help you?"
|
|
mock_client.aio.models.generate_content.assert_called_once()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_generate_content_async_stream(gemini_llm, llm_request):
|
|
with mock.patch.object(gemini_llm, "api_client") as mock_client:
|
|
# Create mock stream responses
|
|
class MockAsyncIterator:
|
|
|
|
def __init__(self, seq):
|
|
self.iter = iter(seq)
|
|
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
return next(self.iter)
|
|
except StopIteration:
|
|
raise StopAsyncIteration
|
|
|
|
mock_responses = [
|
|
types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model", parts=[Part.from_text(text="Hello")]
|
|
),
|
|
finish_reason=None,
|
|
)
|
|
]
|
|
),
|
|
types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model", parts=[Part.from_text(text=", how")]
|
|
),
|
|
finish_reason=None,
|
|
)
|
|
]
|
|
),
|
|
types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model",
|
|
parts=[Part.from_text(text=" can I help you?")],
|
|
),
|
|
finish_reason=types.FinishReason.STOP,
|
|
)
|
|
]
|
|
),
|
|
]
|
|
|
|
# Create a mock coroutine that returns the MockAsyncIterator
|
|
async def mock_coro():
|
|
return MockAsyncIterator(mock_responses)
|
|
|
|
# Set the mock to return the coroutine
|
|
mock_client.aio.models.generate_content_stream.return_value = mock_coro()
|
|
|
|
responses = [
|
|
resp
|
|
async for resp in gemini_llm.generate_content_async(
|
|
llm_request, stream=True
|
|
)
|
|
]
|
|
|
|
# Assertions remain the same
|
|
assert len(responses) == 4
|
|
assert responses[0].partial is True
|
|
assert responses[1].partial is True
|
|
assert responses[2].partial is True
|
|
assert responses[3].content.parts[0].text == "Hello, how can I help you?"
|
|
mock_client.aio.models.generate_content_stream.assert_called_once()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_generate_content_async_stream_preserves_thinking_and_text_parts(
|
|
gemini_llm, llm_request
|
|
):
|
|
with mock.patch.object(gemini_llm, "api_client") as mock_client:
|
|
|
|
class MockAsyncIterator:
|
|
|
|
def __init__(self, seq):
|
|
self._iter = iter(seq)
|
|
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
return next(self._iter)
|
|
except StopIteration:
|
|
raise StopAsyncIteration
|
|
|
|
response1 = types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model",
|
|
parts=[Part(text="Think1", thought=True)],
|
|
),
|
|
finish_reason=None,
|
|
)
|
|
]
|
|
)
|
|
response2 = types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model",
|
|
parts=[Part(text="Think2", thought=True)],
|
|
),
|
|
finish_reason=None,
|
|
)
|
|
]
|
|
)
|
|
response3 = types.GenerateContentResponse(
|
|
candidates=[
|
|
types.Candidate(
|
|
content=Content(
|
|
role="model",
|
|
parts=[Part.from_text(text="Answer.")],
|
|
),
|
|
finish_reason=types.FinishReason.STOP,
|
|
)
|
|
]
|
|
)
|
|
|
|
async def mock_coro():
|
|
return MockAsyncIterator([response1, response2, response3])
|
|
|
|
mock_client.aio.models.generate_content_stream.return_value = mock_coro()
|
|
|
|
responses = [
|
|
resp
|
|
async for resp in gemini_llm.generate_content_async(
|
|
llm_request, stream=True
|
|
)
|
|
]
|
|
|
|
assert len(responses) == 4
|
|
assert responses[0].partial is True
|
|
assert responses[1].partial is True
|
|
assert responses[2].partial is True
|
|
assert responses[3].content.parts[0].text == "Think1Think2"
|
|
assert responses[3].content.parts[0].thought is True
|
|
assert responses[3].content.parts[1].text == "Answer."
|
|
mock_client.aio.models.generate_content_stream.assert_called_once()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_connect(gemini_llm, llm_request):
|
|
# Create a mock connection
|
|
mock_connection = mock.MagicMock(spec=GeminiLlmConnection)
|
|
|
|
# Create a mock context manager
|
|
class MockContextManager:
|
|
|
|
async def __aenter__(self):
|
|
return mock_connection
|
|
|
|
async def __aexit__(self, *args):
|
|
pass
|
|
|
|
# Mock the connect method at the class level
|
|
with mock.patch(
|
|
"google.adk.models.google_llm.Gemini.connect",
|
|
return_value=MockContextManager(),
|
|
):
|
|
async with gemini_llm.connect(llm_request) as connection:
|
|
assert connection is mock_connection
|