adk-python/src/google/adk/tools/load_memory_tool.py
Shangjie Chen bcf1deb582 ADK changes
PiperOrigin-RevId: 754131080
2025-05-02 14:19:18 -07:00

84 lines
2.3 KiB
Python

# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING
from google.genai import types
from typing_extensions import override
from .function_tool import FunctionTool
from .tool_context import ToolContext
if TYPE_CHECKING:
from ..memory.base_memory_service import MemoryResult
from ..models import LlmRequest
async def load_memory(
query: str, tool_context: ToolContext
) -> 'list[MemoryResult]':
"""Loads the memory for the current user.
Args:
query: The query to load the memory for.
Returns:
A list of memory results.
"""
response = await tool_context.search_memory(query)
return response.memories
class LoadMemoryTool(FunctionTool):
"""A tool that loads the memory for the current user."""
def __init__(self):
super().__init__(load_memory)
@override
def _get_declaration(self) -> types.FunctionDeclaration | None:
return types.FunctionDeclaration(
name=self.name,
description=self.description,
parameters=types.Schema(
type=types.Type.OBJECT,
properties={
'query': types.Schema(
type=types.Type.STRING,
)
},
),
)
@override
async def process_llm_request(
self,
*,
tool_context: ToolContext,
llm_request: LlmRequest,
) -> None:
await super().process_llm_request(
tool_context=tool_context, llm_request=llm_request
)
# Tell the model about the memory.
llm_request.append_instructions(["""
You have memory. You can use it to answer questions. If any questions need
you to look up the memory, you should call load_memory function with a query.
"""])
load_memory_tool = LoadMemoryTool()