adk-python/tests/unittests/evaluation/test_trajectory_evaluator.py
Xiang (Sean) Zhou ff8a3c9b43 chore: reformat the codes using autoformat.sh
PiperOrigin-RevId: 762004002
2025-05-22 09:43:54 -07:00

273 lines
9.5 KiB
Python

# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testings for the Trajectory Evaluator."""
import math
from google.adk.evaluation.trajectory_evaluator import TrajectoryEvaluator
import pytest
# Define reusable tool call structures
TOOL_ROLL_DICE_16 = {"tool_name": "roll_die", "tool_input": {"sides": 16}}
TOOL_ROLL_DICE_6 = {"tool_name": "roll_die", "tool_input": {"sides": 6}}
TOOL_GET_WEATHER = {
"tool_name": "get_weather",
"tool_input": {"location": "Paris"},
}
TOOL_GET_WEATHER_SF = {
"tool_name": "get_weather",
"tool_input": {"location": "SF"},
}
# Sample data for turns
TURN_MATCH = {
"query": "Q1",
"response": "R1",
"actual_tool_use": [TOOL_ROLL_DICE_16],
"expected_tool_use": [TOOL_ROLL_DICE_16],
}
TURN_MISMATCH_INPUT = {
"query": "Q2",
"response": "R2",
"actual_tool_use": [TOOL_ROLL_DICE_6],
"expected_tool_use": [TOOL_ROLL_DICE_16],
}
TURN_MISMATCH_NAME = {
"query": "Q3",
"response": "R3",
"actual_tool_use": [TOOL_GET_WEATHER],
"expected_tool_use": [TOOL_ROLL_DICE_16],
}
TURN_MATCH_MULTIPLE = {
"query": "Q4",
"response": "R4",
"actual_tool_use": [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6],
"expected_tool_use": [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6],
}
TURN_MISMATCH_ORDER = {
"query": "Q5",
"response": "R5",
"actual_tool_use": [TOOL_ROLL_DICE_6, TOOL_GET_WEATHER],
"expected_tool_use": [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6],
}
TURN_MISMATCH_LENGTH_ACTUAL_LONGER = {
"query": "Q6",
"response": "R6",
"actual_tool_use": [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6],
"expected_tool_use": [TOOL_GET_WEATHER],
}
TURN_MISMATCH_LENGTH_EXPECTED_LONGER = {
"query": "Q7",
"response": "R7",
"actual_tool_use": [TOOL_GET_WEATHER],
"expected_tool_use": [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6],
}
TURN_MATCH_WITH_MOCK_OUTPUT = {
"query": "Q8",
"response": "R8",
"actual_tool_use": [TOOL_GET_WEATHER_SF],
"expected_tool_use": [
{**TOOL_GET_WEATHER_SF, "mock_tool_output": "Sunny"}
], # Add mock output to expected
}
TURN_MATCH_EMPTY_TOOLS = {
"query": "Q9",
"response": "R9",
"actual_tool_use": [],
"expected_tool_use": [],
}
TURN_MISMATCH_EMPTY_VS_NONEMPTY = {
"query": "Q10",
"response": "R10",
"actual_tool_use": [],
"expected_tool_use": [TOOL_GET_WEATHER],
}
def test_evaluate_none_dataset_raises_value_error():
"""Tests evaluate function raises ValueError for an empty list."""
with pytest.raises(ValueError, match="The evaluation dataset is empty."):
TrajectoryEvaluator.evaluate(None)
def test_evaluate_empty_dataset_raises_value_error():
"""Tests evaluate function raises ValueError for an empty list."""
with pytest.raises(ValueError, match="The evaluation dataset is empty."):
TrajectoryEvaluator.evaluate([])
def test_evaluate_single_turn_match():
"""Tests evaluate function with one conversation, one turn, perfect match."""
eval_dataset = [[TURN_MATCH]]
assert TrajectoryEvaluator.evaluate(eval_dataset) == 1.0
def test_evaluate_single_turn_mismatch():
"""Tests evaluate function with one conversation, one turn, mismatch."""
eval_dataset = [[TURN_MISMATCH_INPUT]]
assert TrajectoryEvaluator.evaluate(eval_dataset) == 0.0
def test_evaluate_multiple_turns_all_match():
"""Tests evaluate function with one conversation, multiple turns, all match."""
eval_dataset = [[TURN_MATCH, TURN_MATCH_MULTIPLE, TURN_MATCH_EMPTY_TOOLS]]
assert TrajectoryEvaluator.evaluate(eval_dataset) == 1.0
def test_evaluate_multiple_turns_mixed():
"""Tests evaluate function with one conversation, mixed match/mismatch turns."""
eval_dataset = [
[TURN_MATCH, TURN_MISMATCH_NAME, TURN_MATCH_MULTIPLE, TURN_MISMATCH_ORDER]
]
# Expected: (1.0 + 0.0 + 1.0 + 0.0) / 4 = 0.5
assert TrajectoryEvaluator.evaluate(eval_dataset) == 0.5
def test_evaluate_multiple_conversations_mixed():
"""Tests evaluate function with multiple conversations, mixed turns."""
eval_dataset = [
[TURN_MATCH, TURN_MISMATCH_INPUT], # Conv 1: 1.0, 0.0 -> Avg 0.5
[TURN_MATCH_MULTIPLE], # Conv 2: 1.0 -> Avg 1.0
[
TURN_MISMATCH_ORDER,
TURN_MISMATCH_LENGTH_ACTUAL_LONGER,
TURN_MATCH,
], # Conv 3: 0.0, 0.0, 1.0 -> Avg 1/3
]
# Expected: (1.0 + 0.0 + 1.0 + 0.0 + 0.0 + 1.0) / 6 = 3.0 / 6 = 0.5
assert TrajectoryEvaluator.evaluate(eval_dataset) == 0.5
def test_evaluate_ignores_mock_tool_output_in_expected():
"""Tests evaluate function correctly compares even if expected has mock_tool_output."""
eval_dataset = [[TURN_MATCH_WITH_MOCK_OUTPUT]]
assert TrajectoryEvaluator.evaluate(eval_dataset) == 1.0
def test_evaluate_match_empty_tool_lists():
"""Tests evaluate function correctly matches empty tool lists."""
eval_dataset = [[TURN_MATCH_EMPTY_TOOLS]]
assert TrajectoryEvaluator.evaluate(eval_dataset) == 1.0
def test_evaluate_mismatch_empty_vs_nonempty():
"""Tests evaluate function correctly mismatches empty vs non-empty tool lists."""
eval_dataset = [[TURN_MISMATCH_EMPTY_VS_NONEMPTY]]
assert TrajectoryEvaluator.evaluate(eval_dataset) == 0.0
eval_dataset_rev = [[{
**TURN_MISMATCH_EMPTY_VS_NONEMPTY, # Swap actual/expected
"actual_tool_use": [TOOL_GET_WEATHER],
"expected_tool_use": [],
}]]
assert TrajectoryEvaluator.evaluate(eval_dataset_rev) == 0.0
def test_evaluate_dataset_with_empty_conversation():
"""Tests evaluate function handles dataset containing an empty conversation list."""
eval_dataset = [[TURN_MATCH], []] # One valid conversation, one empty
# Should only evaluate the first conversation -> 1.0 / 1 turn = 1.0
assert TrajectoryEvaluator.evaluate(eval_dataset) == 1.0
def test_evaluate_dataset_only_empty_conversation():
"""Tests evaluate function handles dataset with only an empty conversation."""
eval_dataset = [[]]
# No rows evaluated, mean of empty series is NaN
# Depending on desired behavior, this could be 0.0 or NaN. The code returns
# NaN.
assert math.isnan(TrajectoryEvaluator.evaluate(eval_dataset))
def test_evaluate_print_detailed_results(capsys):
"""Tests evaluate function runs with print_detailed_results=True and prints something."""
eval_dataset = [[TURN_MATCH, TURN_MISMATCH_INPUT]]
TrajectoryEvaluator.evaluate(eval_dataset, print_detailed_results=True)
captured = capsys.readouterr()
assert "query" in captured.out # Check if the results table header is printed
assert "R1" in captured.out # Check if some data is printed
assert "Failures:" in captured.out # Check if failures header is printed
assert "Q2" in captured.out # Check if the failing query is printed
def test_evaluate_no_failures_print(capsys):
"""Tests evaluate function does not print Failures section when all turns match."""
eval_dataset = [[TURN_MATCH]]
TrajectoryEvaluator.evaluate(eval_dataset, print_detailed_results=True)
captured = capsys.readouterr()
assert "query" in captured.out # Results table should still print
assert "Failures:" not in captured.out # Failures section should NOT print
def test_are_tools_equal_identical():
"""Tests are_tools_equal function with identical lists."""
list_a = [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6]
list_b = [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6]
assert TrajectoryEvaluator.are_tools_equal(list_a, list_b)
def test_are_tools_equal_empty():
"""Tests are_tools_equal function with empty lists."""
assert TrajectoryEvaluator.are_tools_equal([], [])
def test_are_tools_equal_different_order():
"""Tests are_tools_equal function with same tools, different order."""
list_a = [TOOL_ROLL_DICE_6, TOOL_GET_WEATHER]
list_b = [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6]
assert not TrajectoryEvaluator.are_tools_equal(list_a, list_b)
def test_are_tools_equal_different_length():
"""Tests are_tools_equal function with lists of different lengths."""
list_a = [TOOL_GET_WEATHER, TOOL_ROLL_DICE_6]
list_b = [TOOL_GET_WEATHER]
assert not TrajectoryEvaluator.are_tools_equal(list_a, list_b)
def test_are_tools_equal_different_input_values():
"""Tests are_tools_equal function with different input values."""
list_a = [TOOL_ROLL_DICE_16]
list_b = [TOOL_ROLL_DICE_6]
assert not TrajectoryEvaluator.are_tools_equal(list_a, list_b)
def test_are_tools_equal_different_tool_names():
"""Tests are_tools_equal function with different tool names."""
list_a = [TOOL_ROLL_DICE_16]
list_b = [TOOL_GET_WEATHER]
assert not TrajectoryEvaluator.are_tools_equal(list_a, list_b)
def test_are_tools_equal_ignores_extra_keys():
"""Tests are_tools_equal function ignores keys other than tool_name/tool_input."""
list_a = [{
"tool_name": "get_weather",
"tool_input": {"location": "Paris"},
"extra_key": "abc",
}]
list_b = [{
"tool_name": "get_weather",
"tool_input": {"location": "Paris"},
"other_key": 123,
}]
assert TrajectoryEvaluator.are_tools_equal(list_a, list_b)
def test_are_tools_equal_one_empty_one_not():
"""Tests are_tools_equal function with one empty list and one non-empty list."""
list_a = []
list_b = [TOOL_GET_WEATHER]
assert not TrajectoryEvaluator.are_tools_equal(list_a, list_b)