adk-python/src/google/adk/flows/llm_flows/base_llm_flow.py
2025-05-25 18:56:16 -07:00

622 lines
21 KiB
Python

# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from abc import ABC
import asyncio
import inspect
import logging
from typing import AsyncGenerator
from typing import cast
from typing import Optional
from typing import TYPE_CHECKING
from websockets.exceptions import ConnectionClosedOK
from . import functions
from ...agents.base_agent import BaseAgent
from ...agents.callback_context import CallbackContext
from ...agents.invocation_context import InvocationContext
from ...agents.live_request_queue import LiveRequestQueue
from ...agents.readonly_context import ReadonlyContext
from ...agents.run_config import StreamingMode
from ...agents.transcription_entry import TranscriptionEntry
from ...events.event import Event
from ...models.base_llm_connection import BaseLlmConnection
from ...models.llm_request import LlmRequest
from ...models.llm_response import LlmResponse
from ...telemetry import trace_call_llm
from ...telemetry import trace_send_data
from ...telemetry import tracer
from ...tools.tool_context import ToolContext
if TYPE_CHECKING:
from ...agents.llm_agent import LlmAgent
from ...models.base_llm import BaseLlm
from ._base_llm_processor import BaseLlmRequestProcessor
from ._base_llm_processor import BaseLlmResponseProcessor
logger = logging.getLogger('google_adk.' + __name__)
class BaseLlmFlow(ABC):
"""A basic flow that calls the LLM in a loop until a final response is generated.
This flow ends when it transfer to another agent.
"""
def __init__(self):
self.request_processors: list[BaseLlmRequestProcessor] = []
self.response_processors: list[BaseLlmResponseProcessor] = []
async def run_live(
self,
invocation_context: InvocationContext,
) -> AsyncGenerator[Event, None]:
"""Runs the flow using live api."""
llm_request = LlmRequest()
event_id = Event.new_id()
# Preprocess before calling the LLM.
async for event in self._preprocess_async(invocation_context, llm_request):
yield event
if invocation_context.end_invocation:
return
llm = self.__get_llm(invocation_context)
logger.debug(
'Establishing live connection for agent: %s with llm request: %s',
invocation_context.agent.name,
llm_request,
)
async with llm.connect(llm_request) as llm_connection:
if llm_request.contents:
# Sends the conversation history to the model.
with tracer.start_as_current_span('send_data'):
if invocation_context.transcription_cache:
from . import audio_transcriber
audio_transcriber = audio_transcriber.AudioTranscriber(
init_client=True
if invocation_context.run_config.input_audio_transcription
is None
else False
)
contents = audio_transcriber.transcribe_file(invocation_context)
logger.debug('Sending history to model: %s', contents)
await llm_connection.send_history(contents)
invocation_context.transcription_cache = None
trace_send_data(invocation_context, event_id, contents)
else:
await llm_connection.send_history(llm_request.contents)
trace_send_data(invocation_context, event_id, llm_request.contents)
send_task = asyncio.create_task(
self._send_to_model(llm_connection, invocation_context)
)
try:
async for event in self._receive_from_model(
llm_connection,
event_id,
invocation_context,
llm_request,
):
# Empty event means the queue is closed.
if not event:
break
logger.debug('Receive new event: %s', event)
yield event
# send back the function response
if event.get_function_responses():
logger.debug('Sending back last function response event: %s', event)
invocation_context.live_request_queue.send_content(event.content)
if (
event.content
and event.content.parts
and event.content.parts[0].function_response
and event.content.parts[0].function_response.name
== 'transfer_to_agent'
):
await asyncio.sleep(1)
# cancel the tasks that belongs to the closed connection.
send_task.cancel()
await llm_connection.close()
if (
event.content
and event.content.parts
and event.content.parts[0].function_response
and event.content.parts[0].function_response.name
== 'task_completed'
):
# this is used for sequential agent to signal the end of the agent.
await asyncio.sleep(1)
# cancel the tasks that belongs to the closed connection.
send_task.cancel()
return
finally:
# Clean up
if not send_task.done():
send_task.cancel()
try:
await send_task
except asyncio.CancelledError:
pass
async def _send_to_model(
self,
llm_connection: BaseLlmConnection,
invocation_context: InvocationContext,
):
"""Sends data to model."""
while True:
live_request_queue = invocation_context.live_request_queue
try:
# Streamlit's execution model doesn't preemptively yield to the event
# loop. Therefore, we must explicitly introduce timeouts to allow the
# event loop to process events.
# TODO: revert back(remove timeout) once we move off streamlit.
live_request = await asyncio.wait_for(
live_request_queue.get(), timeout=0.25
)
# duplicate the live_request to all the active streams
logger.debug(
'Sending live request %s to active streams: %s',
live_request,
invocation_context.active_streaming_tools,
)
if invocation_context.active_streaming_tools:
for active_streaming_tool in (
invocation_context.active_streaming_tools
).values():
if active_streaming_tool.stream:
active_streaming_tool.stream.send(live_request)
await asyncio.sleep(0)
except asyncio.TimeoutError:
continue
if live_request.close:
await llm_connection.close()
return
if live_request.blob:
# Cache audio data here for transcription
if not invocation_context.transcription_cache:
invocation_context.transcription_cache = []
if not invocation_context.run_config.input_audio_transcription:
# if the live model's input transcription is not enabled, then
# we use our onwn audio transcriber to achieve that.
invocation_context.transcription_cache.append(
TranscriptionEntry(role='user', data=live_request.blob)
)
await llm_connection.send_realtime(live_request.blob)
if live_request.content:
await llm_connection.send_content(live_request.content)
async def _receive_from_model(
self,
llm_connection: BaseLlmConnection,
event_id: str,
invocation_context: InvocationContext,
llm_request: LlmRequest,
) -> AsyncGenerator[Event, None]:
"""Receive data from model and process events using BaseLlmConnection."""
def get_author_for_event(llm_response):
"""Get the author of the event.
When the model returns transcription, the author is "user". Otherwise, the
author is the agent name(not 'model').
Args:
llm_response: The LLM response from the LLM call.
"""
if (
llm_response
and llm_response.content
and llm_response.content.role == 'user'
):
return 'user'
else:
return invocation_context.agent.name
assert invocation_context.live_request_queue
try:
while True:
async for llm_response in llm_connection.receive():
model_response_event = Event(
id=Event.new_id(),
invocation_id=invocation_context.invocation_id,
author=get_author_for_event(llm_response),
)
async for event in self._postprocess_live(
invocation_context,
llm_request,
llm_response,
model_response_event,
):
if (
event.content
and event.content.parts
and event.content.parts[0].inline_data is None
and not event.partial
):
# This can be either user data or transcription data.
# when output transcription enabled, it will contain model's
# transcription.
# when input transcription enabled, it will contain user
# transcription.
if not invocation_context.transcription_cache:
invocation_context.transcription_cache = []
invocation_context.transcription_cache.append(
TranscriptionEntry(
role=event.content.role, data=event.content
)
)
yield event
# Give opportunity for other tasks to run.
await asyncio.sleep(0)
except ConnectionClosedOK:
pass
async def run_async(
self, invocation_context: InvocationContext
) -> AsyncGenerator[Event, None]:
"""Runs the flow."""
while True:
last_event = None
async for event in self._run_one_step_async(invocation_context):
last_event = event
yield event
if not last_event or last_event.is_final_response():
break
async def _run_one_step_async(
self,
invocation_context: InvocationContext,
) -> AsyncGenerator[Event, None]:
"""One step means one LLM call."""
llm_request = LlmRequest()
# Preprocess before calling the LLM.
async for event in self._preprocess_async(invocation_context, llm_request):
yield event
if invocation_context.end_invocation:
return
# Calls the LLM.
model_response_event = Event(
id=Event.new_id(),
invocation_id=invocation_context.invocation_id,
author=invocation_context.agent.name,
branch=invocation_context.branch,
)
async for llm_response in self._call_llm_async(
invocation_context, llm_request, model_response_event
):
# Postprocess after calling the LLM.
async for event in self._postprocess_async(
invocation_context, llm_request, llm_response, model_response_event
):
# Update the mutable event id to avoid conflict
model_response_event.id = Event.new_id()
yield event
async def _preprocess_async(
self, invocation_context: InvocationContext, llm_request: LlmRequest
) -> AsyncGenerator[Event, None]:
from ...agents.llm_agent import LlmAgent
agent = invocation_context.agent
if not isinstance(agent, LlmAgent):
return
# Runs processors.
for processor in self.request_processors:
async for event in processor.run_async(invocation_context, llm_request):
yield event
# Run processors for tools.
for tool in await agent.canonical_tools(
ReadonlyContext(invocation_context)
):
tool_context = ToolContext(invocation_context)
await tool.process_llm_request(
tool_context=tool_context, llm_request=llm_request
)
async def _postprocess_async(
self,
invocation_context: InvocationContext,
llm_request: LlmRequest,
llm_response: LlmResponse,
model_response_event: Event,
) -> AsyncGenerator[Event, None]:
"""Postprocess after calling the LLM.
Args:
invocation_context: The invocation context.
llm_request: The original LLM request.
llm_response: The LLM response from the LLM call.
model_response_event: A mutable event for the LLM response.
Yields:
A generator of events.
"""
# Runs processors.
async for event in self._postprocess_run_processors_async(
invocation_context, llm_response
):
yield event
# Skip the model response event if there is no content and no error code.
# This is needed for the code executor to trigger another loop.
if (
not llm_response.content
and not llm_response.error_code
and not llm_response.interrupted
):
return
# Builds the event.
model_response_event = self._finalize_model_response_event(
llm_request, llm_response, model_response_event
)
yield model_response_event
# Handles function calls.
if model_response_event.get_function_calls():
async for event in self._postprocess_handle_function_calls_async(
invocation_context, model_response_event, llm_request
):
yield event
async def _postprocess_live(
self,
invocation_context: InvocationContext,
llm_request: LlmRequest,
llm_response: LlmResponse,
model_response_event: Event,
) -> AsyncGenerator[Event, None]:
"""Postprocess after calling the LLM asynchronously.
Args:
invocation_context: The invocation context.
llm_request: The original LLM request.
llm_response: The LLM response from the LLM call.
model_response_event: A mutable event for the LLM response.
Yields:
A generator of events.
"""
# Runs processors.
async for event in self._postprocess_run_processors_async(
invocation_context, llm_response
):
yield event
# Skip the model response event if there is no content and no error code.
# This is needed for the code executor to trigger another loop.
# But don't skip control events like turn_complete.
if (
not llm_response.content
and not llm_response.error_code
and not llm_response.interrupted
and not llm_response.turn_complete
):
return
# Builds the event.
model_response_event = self._finalize_model_response_event(
llm_request, llm_response, model_response_event
)
yield model_response_event
# Handles function calls.
if model_response_event.get_function_calls():
function_response_event = await functions.handle_function_calls_live(
invocation_context, model_response_event, llm_request.tools_dict
)
yield function_response_event
transfer_to_agent = function_response_event.actions.transfer_to_agent
if transfer_to_agent:
agent_to_run = self._get_agent_to_run(
invocation_context, transfer_to_agent
)
async for item in agent_to_run.run_live(invocation_context):
yield item
async def _postprocess_run_processors_async(
self, invocation_context: InvocationContext, llm_response: LlmResponse
) -> AsyncGenerator[Event, None]:
for processor in self.response_processors:
async for event in processor.run_async(invocation_context, llm_response):
yield event
async def _postprocess_handle_function_calls_async(
self,
invocation_context: InvocationContext,
function_call_event: Event,
llm_request: LlmRequest,
) -> AsyncGenerator[Event, None]:
if function_response_event := await functions.handle_function_calls_async(
invocation_context, function_call_event, llm_request.tools_dict
):
auth_event = functions.generate_auth_event(
invocation_context, function_response_event
)
if auth_event:
yield auth_event
yield function_response_event
transfer_to_agent = function_response_event.actions.transfer_to_agent
if transfer_to_agent:
agent_to_run = self._get_agent_to_run(
invocation_context, transfer_to_agent
)
async for event in agent_to_run.run_async(invocation_context):
yield event
def _get_agent_to_run(
self, invocation_context: InvocationContext, agent_name: str
) -> BaseAgent:
root_agent = invocation_context.agent.root_agent
agent_to_run = root_agent.find_agent(agent_name)
if not agent_to_run:
raise ValueError(f'Agent {agent_name} not found in the agent tree.')
return agent_to_run
async def _call_llm_async(
self,
invocation_context: InvocationContext,
llm_request: LlmRequest,
model_response_event: Event,
) -> AsyncGenerator[LlmResponse, None]:
# Runs before_model_callback if it exists.
if response := await self._handle_before_model_callback(
invocation_context, llm_request, model_response_event
):
yield response
return
# Calls the LLM.
llm = self.__get_llm(invocation_context)
with tracer.start_as_current_span('call_llm'):
if invocation_context.run_config.support_cfc:
invocation_context.live_request_queue = LiveRequestQueue()
async for llm_response in self.run_live(invocation_context):
# Runs after_model_callback if it exists.
if altered_llm_response := await self._handle_after_model_callback(
invocation_context, llm_response, model_response_event
):
llm_response = altered_llm_response
# only yield partial response in SSE streaming mode
if (
invocation_context.run_config.streaming_mode == StreamingMode.SSE
or not llm_response.partial
):
yield llm_response
if llm_response.turn_complete:
invocation_context.live_request_queue.close()
else:
# Check if we can make this llm call or not. If the current call pushes
# the counter beyond the max set value, then the execution is stopped
# right here, and exception is thrown.
invocation_context.increment_llm_call_count()
async for llm_response in llm.generate_content_async(
llm_request,
stream=invocation_context.run_config.streaming_mode
== StreamingMode.SSE,
):
trace_call_llm(
invocation_context,
model_response_event.id,
llm_request,
llm_response,
)
# Runs after_model_callback if it exists.
if altered_llm_response := await self._handle_after_model_callback(
invocation_context, llm_response, model_response_event
):
llm_response = altered_llm_response
yield llm_response
async def _handle_before_model_callback(
self,
invocation_context: InvocationContext,
llm_request: LlmRequest,
model_response_event: Event,
) -> Optional[LlmResponse]:
from ...agents.llm_agent import LlmAgent
agent = invocation_context.agent
if not isinstance(agent, LlmAgent):
return
if not agent.canonical_before_model_callbacks:
return
callback_context = CallbackContext(
invocation_context, event_actions=model_response_event.actions
)
for callback in agent.canonical_before_model_callbacks:
before_model_callback_content = callback(
callback_context=callback_context, llm_request=llm_request
)
if inspect.isawaitable(before_model_callback_content):
before_model_callback_content = await before_model_callback_content
if before_model_callback_content:
return before_model_callback_content
async def _handle_after_model_callback(
self,
invocation_context: InvocationContext,
llm_response: LlmResponse,
model_response_event: Event,
) -> Optional[LlmResponse]:
from ...agents.llm_agent import LlmAgent
agent = invocation_context.agent
if not isinstance(agent, LlmAgent):
return
if not agent.canonical_after_model_callbacks:
return
callback_context = CallbackContext(
invocation_context, event_actions=model_response_event.actions
)
for callback in agent.canonical_after_model_callbacks:
after_model_callback_content = callback(
callback_context=callback_context, llm_response=llm_response
)
if inspect.isawaitable(after_model_callback_content):
after_model_callback_content = await after_model_callback_content
if after_model_callback_content:
return after_model_callback_content
def _finalize_model_response_event(
self,
llm_request: LlmRequest,
llm_response: LlmResponse,
model_response_event: Event,
) -> Event:
model_response_event = Event.model_validate({
**model_response_event.model_dump(exclude_none=True),
**llm_response.model_dump(exclude_none=True),
})
if model_response_event.content:
function_calls = model_response_event.get_function_calls()
if function_calls:
functions.populate_client_function_call_id(model_response_event)
model_response_event.long_running_tool_ids = (
functions.get_long_running_function_calls(
function_calls, llm_request.tools_dict
)
)
return model_response_event
def __get_llm(self, invocation_context: InvocationContext) -> BaseLlm:
from ...agents.llm_agent import LlmAgent
return cast(LlmAgent, invocation_context.agent).canonical_model