mirror of
https://github.com/EvolutionAPI/adk-python.git
synced 2025-07-14 09:51:25 -06:00

-- d481e0604a79470e2c1308827b3ecb78bfb5327e by Alan B <alan@nerds.ai>: feat: 🚧 catch user transcription -- bba436bb76d1d2f9d5ba969fce38ff8b8a443254 by Alan B <alan@nerds.ai>: feat: ✨ send user transcription event as llm_response -- ad2abf540c60895b79c50f9051a6289ce394b98d by Alan B <death1027@outlook.com>: style: 💄 update lint problems -- 744703c06716300c0f9f41633d3bafdf4cb180a1 by Hangfei Lin <hangfeilin@gmail.com>: fix: set right order for input transcription -- 31a5d42d6155b0e5caad0c73c8df43255322016f by Hangfei Lin <hangfeilin@gmail.com>: remove print -- 59e5d9c72060f97d124883150989315401a4c1b5 by Hangfei Lin <hangfeilin@gmail.com>: remove api version COPYBARA_INTEGRATE_REVIEW=https://github.com/google/adk-python/pull/590 from BloodBoy21:feat/api-version-vertex 1ed855249cae398b40691b91c6e468bccec07a3a PiperOrigin-RevId: 757840099
291 lines
8.7 KiB
Python
291 lines
8.7 KiB
Python
# Copyright 2025 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
import contextlib
|
|
from functools import cached_property
|
|
import logging
|
|
import sys
|
|
from typing import AsyncGenerator
|
|
from typing import cast
|
|
from typing import TYPE_CHECKING
|
|
|
|
from google.genai import Client
|
|
from google.genai import types
|
|
from typing_extensions import override
|
|
|
|
from .. import version
|
|
from .base_llm import BaseLlm
|
|
from .base_llm_connection import BaseLlmConnection
|
|
from .gemini_llm_connection import GeminiLlmConnection
|
|
from .llm_response import LlmResponse
|
|
|
|
if TYPE_CHECKING:
|
|
from .llm_request import LlmRequest
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
_NEW_LINE = '\n'
|
|
_EXCLUDED_PART_FIELD = {'inline_data': {'data'}}
|
|
|
|
|
|
class Gemini(BaseLlm):
|
|
"""Integration for Gemini models.
|
|
|
|
Attributes:
|
|
model: The name of the Gemini model.
|
|
"""
|
|
|
|
model: str = 'gemini-1.5-flash'
|
|
|
|
@staticmethod
|
|
@override
|
|
def supported_models() -> list[str]:
|
|
"""Provides the list of supported models.
|
|
|
|
Returns:
|
|
A list of supported models.
|
|
"""
|
|
|
|
return [
|
|
r'gemini-.*',
|
|
# fine-tuned vertex endpoint pattern
|
|
r'projects\/.+\/locations\/.+\/endpoints\/.+',
|
|
# vertex gemini long name
|
|
r'projects\/.+\/locations\/.+\/publishers\/google\/models\/gemini.+',
|
|
]
|
|
|
|
async def generate_content_async(
|
|
self, llm_request: LlmRequest, stream: bool = False
|
|
) -> AsyncGenerator[LlmResponse, None]:
|
|
"""Sends a request to the Gemini model.
|
|
|
|
Args:
|
|
llm_request: LlmRequest, the request to send to the Gemini model.
|
|
stream: bool = False, whether to do streaming call.
|
|
|
|
Yields:
|
|
LlmResponse: The model response.
|
|
"""
|
|
|
|
self._maybe_append_user_content(llm_request)
|
|
logger.info(
|
|
'Sending out request, model: %s, backend: %s, stream: %s',
|
|
llm_request.model,
|
|
self._api_backend,
|
|
stream,
|
|
)
|
|
logger.info(_build_request_log(llm_request))
|
|
|
|
if stream:
|
|
responses = await self.api_client.aio.models.generate_content_stream(
|
|
model=llm_request.model,
|
|
contents=llm_request.contents,
|
|
config=llm_request.config,
|
|
)
|
|
response = None
|
|
text = ''
|
|
# for sse, similar as bidi (see receive method in gemini_llm_connecton.py),
|
|
# we need to mark those text content as partial and after all partial
|
|
# contents are sent, we send an accumulated event which contains all the
|
|
# previous partial content. The only difference is bidi rely on
|
|
# complete_turn flag to detect end while sse depends on finish_reason.
|
|
async for response in responses:
|
|
logger.info(_build_response_log(response))
|
|
llm_response = LlmResponse.create(response)
|
|
if (
|
|
llm_response.content
|
|
and llm_response.content.parts
|
|
and llm_response.content.parts[0].text
|
|
):
|
|
text += llm_response.content.parts[0].text
|
|
llm_response.partial = True
|
|
elif text and (
|
|
not llm_response.content
|
|
or not llm_response.content.parts
|
|
# don't yield the merged text event when receiving audio data
|
|
or not llm_response.content.parts[0].inline_data
|
|
):
|
|
yield LlmResponse(
|
|
content=types.ModelContent(
|
|
parts=[types.Part.from_text(text=text)],
|
|
),
|
|
)
|
|
text = ''
|
|
yield llm_response
|
|
if (
|
|
text
|
|
and response
|
|
and response.candidates
|
|
and response.candidates[0].finish_reason == types.FinishReason.STOP
|
|
):
|
|
yield LlmResponse(
|
|
content=types.ModelContent(
|
|
parts=[types.Part.from_text(text=text)],
|
|
),
|
|
)
|
|
|
|
else:
|
|
response = await self.api_client.aio.models.generate_content(
|
|
model=llm_request.model,
|
|
contents=llm_request.contents,
|
|
config=llm_request.config,
|
|
)
|
|
logger.info(_build_response_log(response))
|
|
yield LlmResponse.create(response)
|
|
|
|
@cached_property
|
|
def api_client(self) -> Client:
|
|
"""Provides the api client.
|
|
|
|
Returns:
|
|
The api client.
|
|
"""
|
|
return Client(
|
|
http_options=types.HttpOptions(headers=self._tracking_headers)
|
|
)
|
|
|
|
@cached_property
|
|
def _api_backend(self) -> str:
|
|
return 'vertex' if self.api_client.vertexai else 'ml_dev'
|
|
|
|
@cached_property
|
|
def _tracking_headers(self) -> dict[str, str]:
|
|
framework_label = f'google-adk/{version.__version__}'
|
|
language_label = 'gl-python/' + sys.version.split()[0]
|
|
version_header_value = f'{framework_label} {language_label}'
|
|
tracking_headers = {
|
|
'x-goog-api-client': version_header_value,
|
|
'user-agent': version_header_value,
|
|
}
|
|
return tracking_headers
|
|
|
|
@cached_property
|
|
def _live_api_client(self) -> Client:
|
|
if self._api_backend == 'vertex':
|
|
#use beta version for vertex api
|
|
api_version = 'v1beta1'
|
|
# use default api version for vertex
|
|
return Client(
|
|
http_options=types.HttpOptions(headers=self._tracking_headers,api_version=api_version)
|
|
)
|
|
else:
|
|
# use v1alpha for ml_dev
|
|
api_version = 'v1alpha'
|
|
return Client(
|
|
http_options=types.HttpOptions(
|
|
headers=self._tracking_headers, api_version=api_version
|
|
)
|
|
)
|
|
|
|
@contextlib.asynccontextmanager
|
|
async def connect(self, llm_request: LlmRequest) -> BaseLlmConnection:
|
|
"""Connects to the Gemini model and returns an llm connection.
|
|
|
|
Args:
|
|
llm_request: LlmRequest, the request to send to the Gemini model.
|
|
|
|
Yields:
|
|
BaseLlmConnection, the connection to the Gemini model.
|
|
"""
|
|
|
|
llm_request.live_connect_config.system_instruction = types.Content(
|
|
role='system',
|
|
parts=[
|
|
types.Part.from_text(text=llm_request.config.system_instruction)
|
|
],
|
|
)
|
|
llm_request.live_connect_config.tools = llm_request.config.tools
|
|
async with self._live_api_client.aio.live.connect(
|
|
model=llm_request.model, config=llm_request.live_connect_config
|
|
) as live_session:
|
|
yield GeminiLlmConnection(live_session)
|
|
|
|
|
|
def _build_function_declaration_log(
|
|
func_decl: types.FunctionDeclaration,
|
|
) -> str:
|
|
param_str = '{}'
|
|
if func_decl.parameters and func_decl.parameters.properties:
|
|
param_str = str({
|
|
k: v.model_dump(exclude_none=True)
|
|
for k, v in func_decl.parameters.properties.items()
|
|
})
|
|
return_str = 'None'
|
|
if func_decl.response:
|
|
return_str = str(func_decl.response.model_dump(exclude_none=True))
|
|
return f'{func_decl.name}: {param_str} -> {return_str}'
|
|
|
|
|
|
def _build_request_log(req: LlmRequest) -> str:
|
|
function_decls: list[types.FunctionDeclaration] = cast(
|
|
list[types.FunctionDeclaration],
|
|
req.config.tools[0].function_declarations if req.config.tools else [],
|
|
)
|
|
function_logs = (
|
|
[
|
|
_build_function_declaration_log(func_decl)
|
|
for func_decl in function_decls
|
|
]
|
|
if function_decls
|
|
else []
|
|
)
|
|
contents_logs = [
|
|
content.model_dump_json(
|
|
exclude_none=True,
|
|
exclude={
|
|
'parts': {
|
|
i: _EXCLUDED_PART_FIELD for i in range(len(content.parts))
|
|
}
|
|
},
|
|
)
|
|
for content in req.contents
|
|
]
|
|
|
|
return f"""
|
|
LLM Request:
|
|
-----------------------------------------------------------
|
|
System Instruction:
|
|
{req.config.system_instruction}
|
|
-----------------------------------------------------------
|
|
Contents:
|
|
{_NEW_LINE.join(contents_logs)}
|
|
-----------------------------------------------------------
|
|
Functions:
|
|
{_NEW_LINE.join(function_logs)}
|
|
-----------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def _build_response_log(resp: types.GenerateContentResponse) -> str:
|
|
function_calls_text = []
|
|
if function_calls := resp.function_calls:
|
|
for func_call in function_calls:
|
|
function_calls_text.append(
|
|
f'name: {func_call.name}, args: {func_call.args}'
|
|
)
|
|
return f"""
|
|
LLM Response:
|
|
-----------------------------------------------------------
|
|
Text:
|
|
{resp.text}
|
|
-----------------------------------------------------------
|
|
Function calls:
|
|
{_NEW_LINE.join(function_calls_text)}
|
|
-----------------------------------------------------------
|
|
Raw response:
|
|
{resp.model_dump_json(exclude_none=True)}
|
|
-----------------------------------------------------------
|
|
"""
|