mirror of
https://github.com/EvolutionAPI/adk-python.git
synced 2025-12-27 15:17:44 -06:00
177 lines
5.7 KiB
Python
177 lines
5.7 KiB
Python
# Copyright 2025 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any
|
|
from typing import TYPE_CHECKING
|
|
|
|
from google.genai import types
|
|
from pydantic import model_validator
|
|
from typing_extensions import override
|
|
|
|
from ..memory.in_memory_memory_service import InMemoryMemoryService
|
|
from ..runners import Runner
|
|
from ..sessions.in_memory_session_service import InMemorySessionService
|
|
from . import _automatic_function_calling_util
|
|
from .base_tool import BaseTool
|
|
from .tool_context import ToolContext
|
|
|
|
if TYPE_CHECKING:
|
|
from ..agents.base_agent import BaseAgent
|
|
from ..agents.llm_agent import LlmAgent
|
|
|
|
|
|
class AgentTool(BaseTool):
|
|
"""A tool that wraps an agent.
|
|
|
|
This tool allows an agent to be called as a tool within a larger application.
|
|
The agent's input schema is used to define the tool's input parameters, and
|
|
the agent's output is returned as the tool's result.
|
|
|
|
Attributes:
|
|
agent: The agent to wrap.
|
|
skip_summarization: Whether to skip summarization of the agent output.
|
|
"""
|
|
|
|
def __init__(self, agent: BaseAgent):
|
|
self.agent = agent
|
|
self.skip_summarization: bool = False
|
|
"""Whether to skip summarization of the agent output."""
|
|
|
|
super().__init__(name=agent.name, description=agent.description)
|
|
|
|
@model_validator(mode='before')
|
|
@classmethod
|
|
def populate_name(cls, data: Any) -> Any:
|
|
data['name'] = data['agent'].name
|
|
return data
|
|
|
|
@override
|
|
def _get_declaration(self) -> types.FunctionDeclaration:
|
|
from ..agents.llm_agent import LlmAgent
|
|
|
|
if isinstance(self.agent, LlmAgent) and self.agent.input_schema:
|
|
result = _automatic_function_calling_util.build_function_declaration(
|
|
func=self.agent.input_schema, variant=self._api_variant
|
|
)
|
|
else:
|
|
result = types.FunctionDeclaration(
|
|
parameters=types.Schema(
|
|
type=types.Type.OBJECT,
|
|
properties={
|
|
'request': types.Schema(
|
|
type=types.Type.STRING,
|
|
),
|
|
},
|
|
required=['request'],
|
|
),
|
|
description=self.agent.description,
|
|
name=self.name,
|
|
)
|
|
result.name = self.name
|
|
return result
|
|
|
|
@override
|
|
async def run_async(
|
|
self,
|
|
*,
|
|
args: dict[str, Any],
|
|
tool_context: ToolContext,
|
|
) -> Any:
|
|
from ..agents.llm_agent import LlmAgent
|
|
|
|
if self.skip_summarization:
|
|
tool_context.actions.skip_summarization = True
|
|
|
|
if isinstance(self.agent, LlmAgent) and self.agent.input_schema:
|
|
input_value = self.agent.input_schema.model_validate(args)
|
|
else:
|
|
input_value = args['request']
|
|
|
|
if isinstance(self.agent, LlmAgent) and self.agent.input_schema:
|
|
if isinstance(input_value, dict):
|
|
input_value = self.agent.input_schema.model_validate(input_value)
|
|
if not isinstance(input_value, self.agent.input_schema):
|
|
raise ValueError(
|
|
f'Input value {input_value} is not of type'
|
|
f' `{self.agent.input_schema}`.'
|
|
)
|
|
content = types.Content(
|
|
role='user',
|
|
parts=[
|
|
types.Part.from_text(
|
|
text=input_value.model_dump_json(exclude_none=True)
|
|
)
|
|
],
|
|
)
|
|
else:
|
|
content = types.Content(
|
|
role='user',
|
|
parts=[types.Part.from_text(text=input_value)],
|
|
)
|
|
runner = Runner(
|
|
app_name=self.agent.name,
|
|
agent=self.agent,
|
|
# TODO(kech): Remove the access to the invocation context.
|
|
# It seems we don't need re-use artifact_service if we forward below.
|
|
artifact_service=tool_context._invocation_context.artifact_service,
|
|
session_service=InMemorySessionService(),
|
|
memory_service=InMemoryMemoryService(),
|
|
)
|
|
session = runner.session_service.create_session(
|
|
app_name=self.agent.name,
|
|
user_id='tmp_user',
|
|
state=tool_context.state.to_dict(),
|
|
)
|
|
|
|
last_event = None
|
|
async for event in runner.run_async(
|
|
user_id=session.user_id, session_id=session.id, new_message=content
|
|
):
|
|
# Forward state delta to parent session.
|
|
if event.actions.state_delta:
|
|
tool_context.state.update(event.actions.state_delta)
|
|
last_event = event
|
|
|
|
if runner.artifact_service:
|
|
# Forward all artifacts to parent session.
|
|
for artifact_name in runner.artifact_service.list_artifact_keys(
|
|
app_name=session.app_name,
|
|
user_id=session.user_id,
|
|
session_id=session.id,
|
|
):
|
|
if artifact := runner.artifact_service.load_artifact(
|
|
app_name=session.app_name,
|
|
user_id=session.user_id,
|
|
session_id=session.id,
|
|
filename=artifact_name,
|
|
):
|
|
tool_context.save_artifact(filename=artifact_name, artifact=artifact)
|
|
|
|
if (
|
|
not last_event
|
|
or not last_event.content
|
|
or not last_event.content.parts
|
|
or not last_event.content.parts[0].text
|
|
):
|
|
return ''
|
|
if isinstance(self.agent, LlmAgent) and self.agent.output_schema:
|
|
tool_result = self.agent.output_schema.model_validate_json(
|
|
last_event.content.parts[0].text
|
|
).model_dump(exclude_none=True)
|
|
else:
|
|
tool_result = last_event.content.parts[0].text
|
|
return tool_result
|