adk-python/tests/unittests/models/test_google_llm.py
Xiang (Sean) Zhou 0250d9e3ac chore: reformat codes using autoformat.sh
PiperOrigin-RevId: 764584699
2025-05-29 11:47:22 -07:00

306 lines
8.9 KiB
Python

# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from unittest import mock
from google.adk import version as adk_version
from google.adk.models.gemini_llm_connection import GeminiLlmConnection
from google.adk.models.google_llm import Gemini
from google.adk.models.llm_request import LlmRequest
from google.adk.models.llm_response import LlmResponse
from google.genai import types
from google.genai import version as genai_version
from google.genai.types import Content
from google.genai.types import Part
import pytest
@pytest.fixture
def generate_content_response():
return types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model",
parts=[Part.from_text(text="Hello, how can I help you?")],
),
finish_reason=types.FinishReason.STOP,
)
]
)
@pytest.fixture
def gemini_llm():
return Gemini(model="gemini-1.5-flash")
@pytest.fixture
def llm_request():
return LlmRequest(
model="gemini-1.5-flash",
contents=[Content(role="user", parts=[Part.from_text(text="Hello")])],
config=types.GenerateContentConfig(
temperature=0.1,
response_modalities=[types.Modality.TEXT],
system_instruction="You are a helpful assistant",
),
)
def test_supported_models():
models = Gemini.supported_models()
assert len(models) == 3
assert models[0] == r"gemini-.*"
assert models[1] == r"projects\/.+\/locations\/.+\/endpoints\/.+"
assert (
models[2]
== r"projects\/.+\/locations\/.+\/publishers\/google\/models\/gemini.+"
)
def test_client_version_header():
model = Gemini(model="gemini-1.5-flash")
client = model.api_client
adk_header = (
f"google-adk/{adk_version.__version__} gl-python/{sys.version.split()[0]}"
)
genai_header = (
f"google-genai-sdk/{genai_version.__version__} gl-python/{sys.version.split()[0]} "
)
expected_header = genai_header + adk_header
assert (
expected_header
in client._api_client._http_options.headers["x-goog-api-client"]
)
assert (
expected_header in client._api_client._http_options.headers["user-agent"]
)
def test_maybe_append_user_content(gemini_llm, llm_request):
# Test with user content already present
gemini_llm._maybe_append_user_content(llm_request)
assert len(llm_request.contents) == 1
# Test with model content as the last message
llm_request.contents.append(
Content(role="model", parts=[Part.from_text(text="Response")])
)
gemini_llm._maybe_append_user_content(llm_request)
assert len(llm_request.contents) == 3
assert llm_request.contents[-1].role == "user"
assert "Continue processing" in llm_request.contents[-1].parts[0].text
@pytest.mark.asyncio
async def test_generate_content_async(
gemini_llm, llm_request, generate_content_response
):
with mock.patch.object(gemini_llm, "api_client") as mock_client:
# Create a mock coroutine that returns the generate_content_response
async def mock_coro():
return generate_content_response
# Assign the coroutine to the mocked method
mock_client.aio.models.generate_content.return_value = mock_coro()
responses = [
resp
async for resp in gemini_llm.generate_content_async(
llm_request, stream=False
)
]
assert len(responses) == 1
assert isinstance(responses[0], LlmResponse)
assert responses[0].content.parts[0].text == "Hello, how can I help you?"
mock_client.aio.models.generate_content.assert_called_once()
@pytest.mark.asyncio
async def test_generate_content_async_stream(gemini_llm, llm_request):
with mock.patch.object(gemini_llm, "api_client") as mock_client:
# Create mock stream responses
class MockAsyncIterator:
def __init__(self, seq):
self.iter = iter(seq)
def __aiter__(self):
return self
async def __anext__(self):
try:
return next(self.iter)
except StopIteration:
raise StopAsyncIteration
mock_responses = [
types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model", parts=[Part.from_text(text="Hello")]
),
finish_reason=None,
)
]
),
types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model", parts=[Part.from_text(text=", how")]
),
finish_reason=None,
)
]
),
types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model",
parts=[Part.from_text(text=" can I help you?")],
),
finish_reason=types.FinishReason.STOP,
)
]
),
]
# Create a mock coroutine that returns the MockAsyncIterator
async def mock_coro():
return MockAsyncIterator(mock_responses)
# Set the mock to return the coroutine
mock_client.aio.models.generate_content_stream.return_value = mock_coro()
responses = [
resp
async for resp in gemini_llm.generate_content_async(
llm_request, stream=True
)
]
# Assertions remain the same
assert len(responses) == 4
assert responses[0].partial is True
assert responses[1].partial is True
assert responses[2].partial is True
assert responses[3].content.parts[0].text == "Hello, how can I help you?"
mock_client.aio.models.generate_content_stream.assert_called_once()
@pytest.mark.asyncio
async def test_generate_content_async_stream_preserves_thinking_and_text_parts(
gemini_llm, llm_request
):
with mock.patch.object(gemini_llm, "api_client") as mock_client:
class MockAsyncIterator:
def __init__(self, seq):
self._iter = iter(seq)
def __aiter__(self):
return self
async def __anext__(self):
try:
return next(self._iter)
except StopIteration:
raise StopAsyncIteration
response1 = types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model",
parts=[Part(text="Think1", thought=True)],
),
finish_reason=None,
)
]
)
response2 = types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model",
parts=[Part(text="Think2", thought=True)],
),
finish_reason=None,
)
]
)
response3 = types.GenerateContentResponse(
candidates=[
types.Candidate(
content=Content(
role="model",
parts=[Part.from_text(text="Answer.")],
),
finish_reason=types.FinishReason.STOP,
)
]
)
async def mock_coro():
return MockAsyncIterator([response1, response2, response3])
mock_client.aio.models.generate_content_stream.return_value = mock_coro()
responses = [
resp
async for resp in gemini_llm.generate_content_async(
llm_request, stream=True
)
]
assert len(responses) == 4
assert responses[0].partial is True
assert responses[1].partial is True
assert responses[2].partial is True
assert responses[3].content.parts[0].text == "Think1Think2"
assert responses[3].content.parts[0].thought is True
assert responses[3].content.parts[1].text == "Answer."
mock_client.aio.models.generate_content_stream.assert_called_once()
@pytest.mark.asyncio
async def test_connect(gemini_llm, llm_request):
# Create a mock connection
mock_connection = mock.MagicMock(spec=GeminiLlmConnection)
# Create a mock context manager
class MockContextManager:
async def __aenter__(self):
return mock_connection
async def __aexit__(self, *args):
pass
# Mock the connect method at the class level
with mock.patch(
"google.adk.models.google_llm.Gemini.connect",
return_value=MockContextManager(),
):
async with gemini_llm.connect(llm_request) as connection:
assert connection is mock_connection