Update Response Evaluators to use the new eval schema.

PiperOrigin-RevId: 758929683
This commit is contained in:
Ankur Sharma
2025-05-14 19:25:41 -07:00
committed by Copybara-Service
parent ee674ce0ef
commit ada24d7171
2 changed files with 149 additions and 54 deletions

View File

@@ -12,18 +12,122 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from typing import Any, Optional
from deprecated import deprecated
from google.genai import types as genai_types
import pandas as pd
from tabulate import tabulate
from typing_extensions import override
from vertexai.preview.evaluation import EvalTask
from vertexai.preview.evaluation import MetricPromptTemplateExamples
from .eval_case import IntermediateData
from .eval_case import Invocation
from .evaluator import EvalStatus
from .evaluator import EvaluationResult
from .evaluator import Evaluator
from .evaluator import PerInvocationResult
class ResponseEvaluator:
class ResponseEvaluator(Evaluator):
"""Runs response evaluation for agents."""
def __init__(self, threshold: float, metric_name: str):
if "response_evaluation_score" == metric_name:
self._metric_name = MetricPromptTemplateExamples.Pointwise.COHERENCE
elif "response_match_score" == metric_name:
self._metric_name = "rouge_1"
else:
raise ValueError(f"`{metric_name}` is not supported.")
self._threshold = threshold
@override
def evaluate_invocations(
self,
actual_invocations: list[Invocation],
expected_invocations: list[Invocation],
) -> EvaluationResult:
total_score = 0.0
num_invocations = 0
per_invocation_results = []
for actual, expected in zip(actual_invocations, expected_invocations):
prompt = self._get_text(expected.user_content)
reference = self._get_text(expected.final_response)
response = self._get_text(actual.final_response)
actual_tool_use = self._get_tool_use_trajectory(actual.intermediate_data)
reference_trajectory = self._get_tool_use_trajectory(
expected.intermediate_data
)
eval_case = {
"prompt": prompt,
"reference": reference,
"response": response,
"actual_tool_user": actual_tool_use,
"reference_trajectory": reference_trajectory,
}
eval_case_result = ResponseEvaluator._perform_eval(
pd.DataFrame([eval_case]), [self._metric_name]
)
score = self._get_score(eval_case_result)
per_invocation_results.append(
PerInvocationResult(
actual_invocation=actual,
expected_invocation=expected,
score=score,
eval_status=self._get_eval_status(score),
)
)
total_score += score
num_invocations += 1
if per_invocation_results:
overall_score = total_score / num_invocations
return EvaluationResult(
overall_score=overall_score,
overall_eval_status=self._get_eval_status(overall_score),
per_invocation_results=per_invocation_results,
)
return EvaluationResult()
def _get_text(self, content: Optional[genai_types.Content]) -> str:
if content and content.parts:
return "\n".join([p.text for p in content.parts if p.text])
return ""
def _get_tool_use_trajectory(
self, intermediate_data: Optional[IntermediateData]
) -> list[dict[str, Any]]:
tool_use_trajectory = []
if not intermediate_data:
return tool_use_trajectory
for function_call in intermediate_data.tool_uses:
tool_use_trajectory.append({
"tool_name": function_call.name,
"tool_input": function_call.args or {},
})
return tool_use_trajectory
def _get_score(self, eval_result) -> float:
return eval_result.summary_metrics[f"{self._metric_name}/mean"].item()
def _get_eval_status(self, score: float):
return EvalStatus.PASSED if score >= self._threshold else EvalStatus.FAILED
@staticmethod
@deprecated(
reason=(
"This method has been deprecated and will be removed soon. Please use"
" evaluate_invocations instead."
)
)
def evaluate(
raw_eval_dataset: list[list[dict[str, Any]]],
evaluation_criteria: list[str],