mirror of
https://github.com/EvolutionAPI/adk-python.git
synced 2026-02-04 13:56:24 -06:00
Update Response Evaluators to use the new eval schema.
PiperOrigin-RevId: 758929683
This commit is contained in:
committed by
Copybara-Service
parent
ee674ce0ef
commit
ada24d7171
@@ -32,6 +32,7 @@ from ..artifacts.base_artifact_service import BaseArtifactService
|
||||
from ..evaluation.eval_case import EvalCase
|
||||
from ..evaluation.eval_case import Invocation
|
||||
from ..evaluation.evaluator import EvalStatus
|
||||
from ..evaluation.evaluator import Evaluator
|
||||
from ..sessions.base_session_service import BaseSessionService
|
||||
from ..sessions.session import Session
|
||||
from .utils import common
|
||||
@@ -271,55 +272,32 @@ async def run_evals(
|
||||
overall_eval_metric_results = []
|
||||
|
||||
for eval_metric in eval_metrics:
|
||||
if eval_metric.metric_name == TOOL_TRAJECTORY_SCORE_KEY:
|
||||
evaluation_result = TrajectoryEvaluator(
|
||||
eval_metric.threshold
|
||||
).evaluate_invocations(
|
||||
actual_invocations=inference_result,
|
||||
expected_invocations=eval_case.conversation,
|
||||
)
|
||||
overall_eval_metric_results.append(
|
||||
metric_evaluator = _get_evaluator(eval_metric)
|
||||
|
||||
evaluation_result = metric_evaluator.evaluate_invocations(
|
||||
actual_invocations=inference_result,
|
||||
expected_invocations=eval_case.conversation,
|
||||
)
|
||||
|
||||
overall_eval_metric_results.append(
|
||||
EvalMetricResult(
|
||||
metric_name=eval_metric.metric_name,
|
||||
threshold=eval_metric.threshold,
|
||||
score=evaluation_result.overall_score,
|
||||
eval_status=evaluation_result.overall_eval_status,
|
||||
)
|
||||
)
|
||||
for index, per_invocation_result in enumerate(
|
||||
evaluation_result.per_invocation_results
|
||||
):
|
||||
eval_metric_result_per_invocation[index].eval_metric_results.append(
|
||||
EvalMetricResult(
|
||||
metric_name=eval_metric.metric_name,
|
||||
threshold=eval_metric.threshold,
|
||||
score=evaluation_result.overall_score,
|
||||
eval_status=evaluation_result.overall_eval_status,
|
||||
score=per_invocation_result.score,
|
||||
eval_status=per_invocation_result.eval_status,
|
||||
)
|
||||
)
|
||||
for index, per_invocation_result in enumerate(
|
||||
evaluation_result.per_invocation_results
|
||||
):
|
||||
eval_metric_result_per_invocation[
|
||||
index
|
||||
].eval_metric_results.append(
|
||||
EvalMetricResult(
|
||||
metric_name=eval_metric.metric_name,
|
||||
threshold=eval_metric.threshold,
|
||||
score=per_invocation_result.score,
|
||||
eval_status=per_invocation_result.eval_status,
|
||||
)
|
||||
)
|
||||
|
||||
# elif eval_metric.metric_name == RESPONSE_MATCH_SCORE_KEY:
|
||||
# score = ResponseEvaluator.evaluate(
|
||||
# [inference_result],
|
||||
# [RESPONSE_MATCH_SCORE_KEY],
|
||||
# print_detailed_results=print_detailed_results,
|
||||
# )
|
||||
# eval_metric_result = _get_eval_metric_result(
|
||||
# eval_metric, score["rouge_1/mean"].item()
|
||||
# )
|
||||
# elif eval_metric.metric_name == RESPONSE_EVALUATION_SCORE_KEY:
|
||||
# score = ResponseEvaluator.evaluate(
|
||||
# [inference_result],
|
||||
# [RESPONSE_EVALUATION_SCORE_KEY],
|
||||
# print_detailed_results=print_detailed_results,
|
||||
# )
|
||||
# eval_metric_result = _get_eval_metric_result(
|
||||
# eval_metric, score["coherence/mean"].item()
|
||||
# )
|
||||
else:
|
||||
logger.warning("`%s` is not supported.", eval_metric.metric_name)
|
||||
|
||||
final_eval_status = EvalStatus.NOT_EVALUATED
|
||||
# Go over the all the eval statuses and mark the final eval status as
|
||||
@@ -356,13 +334,26 @@ async def run_evals(
|
||||
|
||||
print(f"Result: {result}\n")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
logger.info("Error: %s", str(traceback.format_exc()))
|
||||
except Exception:
|
||||
# Catching the general exception, so that we don't block other eval
|
||||
# cases.
|
||||
logger.exception(f"Eval failed for `{eval_set_id}:{eval_name}`")
|
||||
|
||||
|
||||
def _get_eval_metric_result(eval_metric, score):
|
||||
eval_status = (
|
||||
EvalStatus.PASSED if score >= eval_metric.threshold else EvalStatus.FAILED
|
||||
)
|
||||
return EvalMetricResult(score=score, eval_status=eval_status)
|
||||
def _get_evaluator(eval_metric: EvalMetric) -> Evaluator:
|
||||
try:
|
||||
from ..evaluation.response_evaluator import ResponseEvaluator
|
||||
from ..evaluation.trajectory_evaluator import TrajectoryEvaluator
|
||||
except ModuleNotFoundError as e:
|
||||
raise ModuleNotFoundError(MISSING_EVAL_DEPENDENCIES_MESSAGE) from e
|
||||
if eval_metric.metric_name == TOOL_TRAJECTORY_SCORE_KEY:
|
||||
return TrajectoryEvaluator(threshold=eval_metric.threshold)
|
||||
elif (
|
||||
eval_metric.metric_name == RESPONSE_MATCH_SCORE_KEY
|
||||
or eval_metric == RESPONSE_EVALUATION_SCORE_KEY
|
||||
):
|
||||
return ResponseEvaluator(
|
||||
threshold=eval_metric.threshold, metric_name=eval_metric.metric_name
|
||||
)
|
||||
|
||||
raise ValueError(f"Unsupported eval metric: {eval_metric}")
|
||||
|
||||
Reference in New Issue
Block a user