Make tool_call one span for telemetry

Also renamed tool_call as execute_tool and added attributes as recommended in https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span.

PiperOrigin-RevId: 764594179
This commit is contained in:
Selcuk Gun
2025-05-29 00:01:18 -07:00
committed by Copybara-Service
parent 96b36b70dc
commit 999a7fe69d
7 changed files with 779 additions and 168 deletions

View File

@@ -0,0 +1,99 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from typing import Dict
from typing import Optional
from unittest import mock
from google.adk import telemetry
from google.adk.agents import Agent
from google.adk.events.event import Event
from google.adk.flows.llm_flows.functions import handle_function_calls_async
from google.adk.tools.function_tool import FunctionTool
from google.genai import types
from ... import testing_utils
async def invoke_tool() -> Optional[Event]:
def simple_fn(**kwargs) -> Dict[str, Any]:
return {'result': 'test'}
tool = FunctionTool(simple_fn)
model = testing_utils.MockModel.create(responses=[])
agent = Agent(
name='agent',
model=model,
tools=[tool],
)
invocation_context = await testing_utils.create_invocation_context(
agent=agent, user_content=''
)
function_call = types.FunctionCall(name=tool.name, args={'a': 1, 'b': 2})
content = types.Content(parts=[types.Part(function_call=function_call)])
event = Event(
invocation_id=invocation_context.invocation_id,
author=agent.name,
content=content,
)
tools_dict = {tool.name: tool}
return await handle_function_calls_async(
invocation_context,
event,
tools_dict,
)
async def test_simple_function_with_mocked_tracer(monkeypatch):
mock_start_as_current_span_func = mock.Mock()
returned_context_manager_mock = mock.MagicMock()
returned_context_manager_mock.__enter__.return_value = mock.Mock(
name='span_mock'
)
mock_start_as_current_span_func.return_value = returned_context_manager_mock
monkeypatch.setattr(
telemetry.tracer, 'start_as_current_span', mock_start_as_current_span_func
)
mock_adk_trace_tool_call = mock.Mock()
monkeypatch.setattr(
'google.adk.flows.llm_flows.functions.trace_tool_call',
mock_adk_trace_tool_call,
)
event = await invoke_tool()
assert event is not None
event = await invoke_tool()
assert event is not None
expected_span_name = 'execute_tool simple_fn'
assert mock_start_as_current_span_func.call_count == 2
mock_start_as_current_span_func.assert_any_call(expected_span_name)
assert returned_context_manager_mock.__enter__.call_count == 2
assert returned_context_manager_mock.__exit__.call_count == 2
assert mock_adk_trace_tool_call.call_count == 2
for call_args_item in mock_adk_trace_tool_call.call_args_list:
kwargs = call_args_item.kwargs
assert kwargs['tool'].name == 'simple_fn'
assert kwargs['args'] == {'a': 1, 'b': 2}
assert 'function_response_event' in kwargs
assert kwargs['function_response_event'].content.parts[
0
].function_response.response == {'result': 'test'}