Agent Development Kit(ADK)

An easy-to-use and powerful framework to build AI agents.
This commit is contained in:
hangfei
2025-04-08 17:22:09 +00:00
parent f92478bd5c
commit 9827820143
299 changed files with 44398 additions and 2 deletions

View File

@@ -0,0 +1,673 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import logging
from typing import Any
from typing import AsyncGenerator
from typing import cast
from typing import Dict
from typing import Generator
from typing import Iterable
from typing import Literal
from typing import Optional
from typing import Tuple
from typing import Union
from google.genai import types
from litellm import acompletion
from litellm import ChatCompletionAssistantMessage
from litellm import ChatCompletionDeveloperMessage
from litellm import ChatCompletionImageUrlObject
from litellm import ChatCompletionMessageToolCall
from litellm import ChatCompletionTextObject
from litellm import ChatCompletionToolMessage
from litellm import ChatCompletionUserMessage
from litellm import ChatCompletionVideoUrlObject
from litellm import completion
from litellm import CustomStreamWrapper
from litellm import Function
from litellm import Message
from litellm import ModelResponse
from litellm import OpenAIMessageContent
from pydantic import BaseModel
from pydantic import Field
from typing_extensions import override
from .base_llm import BaseLlm
from .llm_request import LlmRequest
from .llm_response import LlmResponse
logger = logging.getLogger(__name__)
_NEW_LINE = "\n"
_EXCLUDED_PART_FIELD = {"inline_data": {"data"}}
class FunctionChunk(BaseModel):
id: Optional[str]
name: Optional[str]
args: Optional[str]
class TextChunk(BaseModel):
text: str
class LiteLLMClient:
"""Provides acompletion method (for better testability)."""
async def acompletion(
self, model, messages, tools, **kwargs
) -> Union[ModelResponse, CustomStreamWrapper]:
"""Asynchronously calls acompletion.
Args:
model: The model name.
messages: The messages to send to the model.
tools: The tools to use for the model.
**kwargs: Additional arguments to pass to acompletion.
Returns:
The model response as a message.
"""
return await acompletion(
model=model,
messages=messages,
tools=tools,
**kwargs,
)
def completion(
self, model, messages, tools, stream=False, **kwargs
) -> Union[ModelResponse, CustomStreamWrapper]:
"""Synchronously calls completion. This is used for streaming only.
Args:
model: The model to use.
messages: The messages to send.
tools: The tools to use for the model.
stream: Whether to stream the response.
**kwargs: Additional arguments to pass to completion.
Returns:
The response from the model.
"""
return completion(
model=model,
messages=messages,
tools=tools,
stream=stream,
**kwargs,
)
def _safe_json_serialize(obj) -> str:
"""Convert any Python object to a JSON-serializable type or string.
Args:
obj: The object to serialize.
Returns:
The JSON-serialized object string or string.
"""
try:
# Try direct JSON serialization first
return json.dumps(obj)
except (TypeError, OverflowError):
return str(obj)
def _content_to_message_param(
content: types.Content,
) -> Message:
"""Converts a types.Content to a litellm Message.
Args:
content: The content to convert.
Returns:
The litellm Message.
"""
if content.parts and content.parts[0].function_response:
return ChatCompletionToolMessage(
role="tool",
tool_call_id=content.parts[0].function_response.id,
content=_safe_json_serialize(
content.parts[0].function_response.response
),
)
role = _to_litellm_role(content.role)
if role == "user":
return ChatCompletionUserMessage(
role="user", content=_get_content(content.parts)
)
else:
tool_calls = [
ChatCompletionMessageToolCall(
type="function",
id=part.function_call.id,
function=Function(
name=part.function_call.name,
arguments=part.function_call.args,
),
)
for part in content.parts
if part.function_call
]
return ChatCompletionAssistantMessage(
role=role,
content=_get_content(content.parts),
tool_calls=tool_calls or None,
)
def _get_content(parts: Iterable[types.Part]) -> OpenAIMessageContent | str:
"""Converts a list of parts to litellm content.
Args:
parts: The parts to convert.
Returns:
The litellm content.
"""
content_objects = []
for part in parts:
if part.text:
if len(parts) == 1:
return part.text
content_objects.append(
ChatCompletionTextObject(
type="text",
text=part.text,
)
)
elif (
part.inline_data
and part.inline_data.data
and part.inline_data.mime_type
):
base64_string = base64.b64encode(part.inline_data.data).decode("utf-8")
data_uri = f"data:{part.inline_data.mime_type};base64,{base64_string}"
if part.inline_data.mime_type.startswith("image"):
content_objects.append(
ChatCompletionImageUrlObject(
type="image_url",
image_url=data_uri,
)
)
elif part.inline_data.mime_type.startswith("video"):
content_objects.append(
ChatCompletionVideoUrlObject(
type="video_url",
video_url=data_uri,
)
)
else:
raise ValueError("LiteLlm(BaseLlm) does not support this content part.")
return content_objects
def _to_litellm_role(role: Optional[str]) -> Literal["user", "assistant"]:
"""Converts a types.Content role to a litellm role.
Args:
role: The types.Content role.
Returns:
The litellm role.
"""
if role in ["model", "assistant"]:
return "assistant"
return "user"
TYPE_LABELS = {
"STRING": "string",
"NUMBER": "number",
"BOOLEAN": "boolean",
"OBJECT": "object",
"ARRAY": "array",
"INTEGER": "integer",
}
def _schema_to_dict(schema: types.Schema) -> dict:
"""Recursively converts a types.Schema to a dictionary.
Args:
schema: The schema to convert.
Returns:
The dictionary representation of the schema.
"""
schema_dict = schema.model_dump(exclude_none=True)
if "type" in schema_dict:
schema_dict["type"] = schema_dict["type"].lower()
if "items" in schema_dict:
if isinstance(schema_dict["items"], dict):
schema_dict["items"] = _schema_to_dict(
types.Schema.model_validate(schema_dict["items"])
)
elif isinstance(schema_dict["items"]["type"], types.Type):
schema_dict["items"]["type"] = TYPE_LABELS[
schema_dict["items"]["type"].value
]
if "properties" in schema_dict:
properties = {}
for key, value in schema_dict["properties"].items():
if isinstance(value, types.Schema):
properties[key] = _schema_to_dict(value)
else:
properties[key] = value
if "type" in properties[key]:
properties[key]["type"] = properties[key]["type"].lower()
schema_dict["properties"] = properties
return schema_dict
def _function_declaration_to_tool_param(
function_declaration: types.FunctionDeclaration,
) -> dict:
"""Converts a types.FunctionDeclaration to a openapi spec dictionary.
Args:
function_declaration: The function declaration to convert.
Returns:
The openapi spec dictionary representation of the function declaration.
"""
assert function_declaration.name
properties = {}
if (
function_declaration.parameters
and function_declaration.parameters.properties
):
for key, value in function_declaration.parameters.properties.items():
properties[key] = _schema_to_dict(value)
return {
"type": "function",
"function": {
"name": function_declaration.name,
"description": function_declaration.description or "",
"parameters": {
"type": "object",
"properties": properties,
},
},
}
def _model_response_to_chunk(
response: ModelResponse,
) -> Generator[
Tuple[Optional[Union[TextChunk, FunctionChunk]], Optional[str]], None, None
]:
"""Converts a litellm message to text or function chunk.
Args:
response: The response from the model.
Yields:
A tuple of text or function chunk and finish reason.
"""
message = None
if response.get("choices", None):
message = response["choices"][0].get("message", None)
finish_reason = response["choices"][0].get("finish_reason", None)
# check streaming delta
if message is None and response["choices"][0].get("delta", None):
message = response["choices"][0]["delta"]
if message.get("content", None):
yield TextChunk(text=message.get("content")), finish_reason
if message.get("tool_calls", None):
for tool_call in message.get("tool_calls"):
# aggregate tool_call
if tool_call.type == "function":
yield FunctionChunk(
id=tool_call.id,
name=tool_call.function.name,
args=tool_call.function.arguments,
), finish_reason
if finish_reason and not (
message.get("content", None) or message.get("tool_calls", None)
):
yield None, finish_reason
if not message:
yield None, None
def _model_response_to_generate_content_response(
response: ModelResponse,
) -> LlmResponse:
"""Converts a litellm response to LlmResponse.
Args:
response: The model response.
Returns:
The LlmResponse.
"""
message = None
if response.get("choices", None):
message = response["choices"][0].get("message", None)
if not message:
raise ValueError("No message in response")
return _message_to_generate_content_response(message)
def _message_to_generate_content_response(
message: Message, is_partial: bool = False
) -> LlmResponse:
"""Converts a litellm message to LlmResponse.
Args:
message: The message to convert.
is_partial: Whether the message is partial.
Returns:
The LlmResponse.
"""
parts = []
if message.get("content", None):
parts.append(types.Part.from_text(text=message.get("content")))
if message.get("tool_calls", None):
for tool_call in message.get("tool_calls"):
if tool_call.type == "function":
part = types.Part.from_function_call(
name=tool_call.function.name,
args=json.loads(tool_call.function.arguments or "{}"),
)
part.function_call.id = tool_call.id
parts.append(part)
return LlmResponse(
content=types.Content(role="model", parts=parts), partial=is_partial
)
def _get_completion_inputs(
llm_request: LlmRequest,
) -> tuple[Iterable[Message], Iterable[dict]]:
"""Converts an LlmRequest to litellm inputs.
Args:
llm_request: The LlmRequest to convert.
Returns:
The litellm inputs (message list and tool dictionary).
"""
messages = [
_content_to_message_param(content)
for content in llm_request.contents or []
]
if llm_request.config.system_instruction:
messages.insert(
0,
ChatCompletionDeveloperMessage(
role="developer",
content=llm_request.config.system_instruction,
),
)
tools = None
if (
llm_request.config
and llm_request.config.tools
and llm_request.config.tools[0].function_declarations
):
tools = [
_function_declaration_to_tool_param(tool)
for tool in llm_request.config.tools[0].function_declarations
]
return messages, tools
def _build_function_declaration_log(
func_decl: types.FunctionDeclaration,
) -> str:
"""Builds a function declaration log.
Args:
func_decl: The function declaration to convert.
Returns:
The function declaration log.
"""
param_str = "{}"
if func_decl.parameters and func_decl.parameters.properties:
param_str = str({
k: v.model_dump(exclude_none=True)
for k, v in func_decl.parameters.properties.items()
})
return_str = "None"
if func_decl.response:
return_str = str(func_decl.response.model_dump(exclude_none=True))
return f"{func_decl.name}: {param_str} -> {return_str}"
def _build_request_log(req: LlmRequest) -> str:
"""Builds a request log.
Args:
req: The request to convert.
Returns:
The request log.
"""
function_decls: list[types.FunctionDeclaration] = cast(
list[types.FunctionDeclaration],
req.config.tools[0].function_declarations if req.config.tools else [],
)
function_logs = (
[
_build_function_declaration_log(func_decl)
for func_decl in function_decls
]
if function_decls
else []
)
contents_logs = [
content.model_dump_json(
exclude_none=True,
exclude={
"parts": {
i: _EXCLUDED_PART_FIELD for i in range(len(content.parts))
}
},
)
for content in req.contents
]
return f"""
LLM Request:
-----------------------------------------------------------
System Instruction:
{req.config.system_instruction}
-----------------------------------------------------------
Contents:
{_NEW_LINE.join(contents_logs)}
-----------------------------------------------------------
Functions:
{_NEW_LINE.join(function_logs)}
-----------------------------------------------------------
"""
class LiteLlm(BaseLlm):
"""Wrapper around litellm.
This wrapper can be used with any of the models supported by litellm. The
environment variable(s) needed for authenticating with the model endpoint must
be set prior to instantiating this class.
Example usage:
```
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "your-gcp-location"
agent = Agent(
model=LiteLlm(model="vertex_ai/claude-3-7-sonnet@20250219"),
...
)
```
Attributes:
model: The name of the LiteLlm model.
llm_client: The LLM client to use for the model.
model_config: The model config.
"""
llm_client: LiteLLMClient = Field(default_factory=LiteLLMClient)
"""The LLM client to use for the model."""
_additional_args: Dict[str, Any] = None
def __init__(self, model: str, **kwargs):
"""Initializes the LiteLlm class.
Args:
model: The name of the LiteLlm model.
**kwargs: Additional arguments to pass to the litellm completion api.
"""
super().__init__(model=model, **kwargs)
self._additional_args = kwargs
# preventing generation call with llm_client
# and overriding messages, tools and stream which are managed internally
self._additional_args.pop("llm_client", None)
self._additional_args.pop("messages", None)
self._additional_args.pop("tools", None)
# public api called from runner determines to stream or not
self._additional_args.pop("stream", None)
async def generate_content_async(
self, llm_request: LlmRequest, stream: bool = False
) -> AsyncGenerator[LlmResponse, None]:
"""Generates content asynchronously.
Args:
llm_request: LlmRequest, the request to send to the LiteLlm model.
stream: bool = False, whether to do streaming call.
Yields:
LlmResponse: The model response.
"""
logger.info(_build_request_log(llm_request))
messages, tools = _get_completion_inputs(llm_request)
completion_args = {
"model": self.model,
"messages": messages,
"tools": tools,
}
completion_args.update(self._additional_args)
if stream:
text = ""
function_name = ""
function_args = ""
function_id = None
completion_args["stream"] = True
for part in self.llm_client.completion(**completion_args):
for chunk, finish_reason in _model_response_to_chunk(part):
if isinstance(chunk, FunctionChunk):
if chunk.name:
function_name += chunk.name
if chunk.args:
function_args += chunk.args
function_id = chunk.id or function_id
elif isinstance(chunk, TextChunk):
text += chunk.text
yield _message_to_generate_content_response(
ChatCompletionAssistantMessage(
role="assistant",
content=chunk.text,
),
is_partial=True,
)
if finish_reason == "tool_calls" and function_id:
yield _message_to_generate_content_response(
ChatCompletionAssistantMessage(
role="assistant",
content="",
tool_calls=[
ChatCompletionMessageToolCall(
type="function",
id=function_id,
function=Function(
name=function_name,
arguments=function_args,
),
)
],
)
)
function_name = ""
function_args = ""
function_id = None
elif finish_reason == "stop" and text:
yield _message_to_generate_content_response(
ChatCompletionAssistantMessage(role="assistant", content=text)
)
text = ""
else:
response = await self.llm_client.acompletion(**completion_args)
yield _model_response_to_generate_content_response(response)
@staticmethod
@override
def supported_models() -> list[str]:
"""Provides the list of supported models.
LiteLlm supports all models supported by litellm. We do not keep track of
these models here. So we return an empty list.
Returns:
A list of supported models.
"""
return []