mirror of
https://github.com/EvolutionAPI/adk-python.git
synced 2025-12-18 19:32:21 -06:00
Moves unittests to root folder and adds github action to run unit tests. (#72)
* Move unit tests to root package. * Adds deps to "test" extra, and mark two broken tests in tests/unittests/auth/test_auth_handler.py * Adds github workflow * minor fix in lite_llm.py for python 3.9. * format pyproject.toml
This commit is contained in:
14
tests/unittests/models/__init__.py
Normal file
14
tests/unittests/models/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
# Copyright 2025 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
224
tests/unittests/models/test_google_llm.py
Normal file
224
tests/unittests/models/test_google_llm.py
Normal file
@@ -0,0 +1,224 @@
|
||||
# Copyright 2025 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
from unittest import mock
|
||||
|
||||
from google.adk import version
|
||||
from google.adk.models.gemini_llm_connection import GeminiLlmConnection
|
||||
from google.adk.models.google_llm import Gemini
|
||||
from google.adk.models.llm_request import LlmRequest
|
||||
from google.adk.models.llm_response import LlmResponse
|
||||
from google.genai import types
|
||||
from google.genai.types import Content
|
||||
from google.genai.types import Part
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def generate_content_response():
|
||||
return types.GenerateContentResponse(
|
||||
candidates=[
|
||||
types.Candidate(
|
||||
content=Content(
|
||||
role="model",
|
||||
parts=[Part.from_text(text="Hello, how can I help you?")],
|
||||
),
|
||||
finish_reason=types.FinishReason.STOP,
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def gemini_llm():
|
||||
return Gemini(model="gemini-1.5-flash")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def llm_request():
|
||||
return LlmRequest(
|
||||
model="gemini-1.5-flash",
|
||||
contents=[Content(role="user", parts=[Part.from_text(text="Hello")])],
|
||||
config=types.GenerateContentConfig(
|
||||
temperature=0.1,
|
||||
response_modalities=[types.Modality.TEXT],
|
||||
system_instruction="You are a helpful assistant",
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def test_supported_models():
|
||||
models = Gemini.supported_models()
|
||||
assert len(models) == 3
|
||||
assert models[0] == r"gemini-.*"
|
||||
assert models[1] == r"projects\/.+\/locations\/.+\/endpoints\/.+"
|
||||
assert (
|
||||
models[2]
|
||||
== r"projects\/.+\/locations\/.+\/publishers\/google\/models\/gemini.+"
|
||||
)
|
||||
|
||||
|
||||
def test_client_version_header():
|
||||
model = Gemini(model="gemini-1.5-flash")
|
||||
client = model.api_client
|
||||
expected_header = (
|
||||
f"google-adk/{version.__version__}"
|
||||
f" gl-python/{sys.version.split()[0]} google-genai-sdk/"
|
||||
)
|
||||
assert (
|
||||
expected_header
|
||||
in client._api_client._http_options.headers["x-goog-api-client"]
|
||||
)
|
||||
assert (
|
||||
expected_header in client._api_client._http_options.headers["user-agent"]
|
||||
)
|
||||
|
||||
|
||||
def test_maybe_append_user_content(gemini_llm, llm_request):
|
||||
# Test with user content already present
|
||||
gemini_llm._maybe_append_user_content(llm_request)
|
||||
assert len(llm_request.contents) == 1
|
||||
|
||||
# Test with model content as the last message
|
||||
llm_request.contents.append(
|
||||
Content(role="model", parts=[Part.from_text(text="Response")])
|
||||
)
|
||||
gemini_llm._maybe_append_user_content(llm_request)
|
||||
assert len(llm_request.contents) == 3
|
||||
assert llm_request.contents[-1].role == "user"
|
||||
assert "Continue processing" in llm_request.contents[-1].parts[0].text
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_content_async(
|
||||
gemini_llm, llm_request, generate_content_response
|
||||
):
|
||||
with mock.patch.object(gemini_llm, "api_client") as mock_client:
|
||||
# Create a mock coroutine that returns the generate_content_response
|
||||
async def mock_coro():
|
||||
return generate_content_response
|
||||
|
||||
# Assign the coroutine to the mocked method
|
||||
mock_client.aio.models.generate_content.return_value = mock_coro()
|
||||
|
||||
responses = [
|
||||
resp
|
||||
async for resp in gemini_llm.generate_content_async(
|
||||
llm_request, stream=False
|
||||
)
|
||||
]
|
||||
|
||||
assert len(responses) == 1
|
||||
assert isinstance(responses[0], LlmResponse)
|
||||
assert responses[0].content.parts[0].text == "Hello, how can I help you?"
|
||||
mock_client.aio.models.generate_content.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_content_async_stream(gemini_llm, llm_request):
|
||||
with mock.patch.object(gemini_llm, "api_client") as mock_client:
|
||||
# Create mock stream responses
|
||||
class MockAsyncIterator:
|
||||
|
||||
def __init__(self, seq):
|
||||
self.iter = iter(seq)
|
||||
|
||||
def __aiter__(self):
|
||||
return self
|
||||
|
||||
async def __anext__(self):
|
||||
try:
|
||||
return next(self.iter)
|
||||
except StopIteration:
|
||||
raise StopAsyncIteration
|
||||
|
||||
mock_responses = [
|
||||
types.GenerateContentResponse(
|
||||
candidates=[
|
||||
types.Candidate(
|
||||
content=Content(
|
||||
role="model", parts=[Part.from_text(text="Hello")]
|
||||
),
|
||||
finish_reason=None,
|
||||
)
|
||||
]
|
||||
),
|
||||
types.GenerateContentResponse(
|
||||
candidates=[
|
||||
types.Candidate(
|
||||
content=Content(
|
||||
role="model", parts=[Part.from_text(text=", how")]
|
||||
),
|
||||
finish_reason=None,
|
||||
)
|
||||
]
|
||||
),
|
||||
types.GenerateContentResponse(
|
||||
candidates=[
|
||||
types.Candidate(
|
||||
content=Content(
|
||||
role="model",
|
||||
parts=[Part.from_text(text=" can I help you?")],
|
||||
),
|
||||
finish_reason=types.FinishReason.STOP,
|
||||
)
|
||||
]
|
||||
),
|
||||
]
|
||||
|
||||
# Create a mock coroutine that returns the MockAsyncIterator
|
||||
async def mock_coro():
|
||||
return MockAsyncIterator(mock_responses)
|
||||
|
||||
# Set the mock to return the coroutine
|
||||
mock_client.aio.models.generate_content_stream.return_value = mock_coro()
|
||||
|
||||
responses = [
|
||||
resp
|
||||
async for resp in gemini_llm.generate_content_async(
|
||||
llm_request, stream=True
|
||||
)
|
||||
]
|
||||
|
||||
# Assertions remain the same
|
||||
assert len(responses) == 4
|
||||
assert responses[0].partial is True
|
||||
assert responses[1].partial is True
|
||||
assert responses[2].partial is True
|
||||
assert responses[3].content.parts[0].text == "Hello, how can I help you?"
|
||||
mock_client.aio.models.generate_content_stream.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_connect(gemini_llm, llm_request):
|
||||
# Create a mock connection
|
||||
mock_connection = mock.MagicMock(spec=GeminiLlmConnection)
|
||||
|
||||
# Create a mock context manager
|
||||
class MockContextManager:
|
||||
|
||||
async def __aenter__(self):
|
||||
return mock_connection
|
||||
|
||||
async def __aexit__(self, *args):
|
||||
pass
|
||||
|
||||
# Mock the connect method at the class level
|
||||
with mock.patch(
|
||||
"google.adk.models.google_llm.Gemini.connect",
|
||||
return_value=MockContextManager(),
|
||||
):
|
||||
async with gemini_llm.connect(llm_request) as connection:
|
||||
assert connection is mock_connection
|
||||
804
tests/unittests/models/test_litellm.py
Normal file
804
tests/unittests/models/test_litellm.py
Normal file
@@ -0,0 +1,804 @@
|
||||
# Copyright 2025 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
from unittest.mock import Mock
|
||||
from google.adk.models.lite_llm import _content_to_message_param
|
||||
from google.adk.models.lite_llm import _function_declaration_to_tool_param
|
||||
from google.adk.models.lite_llm import _get_content
|
||||
from google.adk.models.lite_llm import _message_to_generate_content_response
|
||||
from google.adk.models.lite_llm import _model_response_to_chunk
|
||||
from google.adk.models.lite_llm import _to_litellm_role
|
||||
from google.adk.models.lite_llm import FunctionChunk
|
||||
from google.adk.models.lite_llm import LiteLlm
|
||||
from google.adk.models.lite_llm import LiteLLMClient
|
||||
from google.adk.models.lite_llm import TextChunk
|
||||
from google.adk.models.llm_request import LlmRequest
|
||||
from google.genai import types
|
||||
from litellm import ChatCompletionAssistantMessage
|
||||
from litellm import ChatCompletionMessageToolCall
|
||||
from litellm import Function
|
||||
from litellm.types.utils import ChatCompletionDeltaToolCall
|
||||
from litellm.types.utils import Choices
|
||||
from litellm.types.utils import Delta
|
||||
from litellm.types.utils import ModelResponse
|
||||
from litellm.types.utils import StreamingChoices
|
||||
import pytest
|
||||
|
||||
LLM_REQUEST_WITH_FUNCTION_DECLARATION = LlmRequest(
|
||||
contents=[
|
||||
types.Content(
|
||||
role="user", parts=[types.Part.from_text(text="Test prompt")]
|
||||
)
|
||||
],
|
||||
config=types.GenerateContentConfig(
|
||||
tools=[
|
||||
types.Tool(
|
||||
function_declarations=[
|
||||
types.FunctionDeclaration(
|
||||
name="test_function",
|
||||
description="Test function description",
|
||||
parameters=types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"test_arg": types.Schema(
|
||||
type=types.Type.STRING
|
||||
),
|
||||
"array_arg": types.Schema(
|
||||
type=types.Type.ARRAY,
|
||||
items={
|
||||
"type": types.Type.STRING,
|
||||
},
|
||||
),
|
||||
"nested_arg": types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"nested_key1": types.Schema(
|
||||
type=types.Type.STRING
|
||||
),
|
||||
"nested_key2": types.Schema(
|
||||
type=types.Type.STRING
|
||||
),
|
||||
},
|
||||
),
|
||||
},
|
||||
),
|
||||
)
|
||||
]
|
||||
)
|
||||
],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
STREAMING_MODEL_RESPONSE = [
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
delta=Delta(
|
||||
role="assistant",
|
||||
content="zero, ",
|
||||
),
|
||||
)
|
||||
]
|
||||
),
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
delta=Delta(
|
||||
role="assistant",
|
||||
content="one, ",
|
||||
),
|
||||
)
|
||||
]
|
||||
),
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
delta=Delta(
|
||||
role="assistant",
|
||||
content="two:",
|
||||
),
|
||||
)
|
||||
]
|
||||
),
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
delta=Delta(
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
type="function",
|
||||
id="test_tool_call_id",
|
||||
function=Function(
|
||||
name="test_function",
|
||||
arguments='{"test_arg": "test_',
|
||||
),
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
),
|
||||
)
|
||||
]
|
||||
),
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
delta=Delta(
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
type="function",
|
||||
id=None,
|
||||
function=Function(
|
||||
name=None,
|
||||
arguments='value"}',
|
||||
),
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
),
|
||||
)
|
||||
]
|
||||
),
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason="tool_use",
|
||||
)
|
||||
]
|
||||
),
|
||||
]
|
||||
|
||||
@pytest.fixture
|
||||
def mock_response():
|
||||
return ModelResponse(
|
||||
choices=[
|
||||
Choices(
|
||||
message=ChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content="Test response",
|
||||
tool_calls=[
|
||||
ChatCompletionMessageToolCall(
|
||||
type="function",
|
||||
id="test_tool_call_id",
|
||||
function=Function(
|
||||
name="test_function",
|
||||
arguments='{"test_arg": "test_value"}',
|
||||
),
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_acompletion(mock_response):
|
||||
return AsyncMock(return_value=mock_response)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_completion(mock_response):
|
||||
return Mock(return_value=mock_response)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_client(mock_acompletion, mock_completion):
|
||||
return MockLLMClient(mock_acompletion, mock_completion)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lite_llm_instance(mock_client):
|
||||
return LiteLlm(model="test_model", llm_client=mock_client)
|
||||
|
||||
|
||||
class MockLLMClient(LiteLLMClient):
|
||||
|
||||
def __init__(self, acompletion_mock, completion_mock):
|
||||
self.acompletion_mock = acompletion_mock
|
||||
self.completion_mock = completion_mock
|
||||
|
||||
async def acompletion(self, model, messages, tools, **kwargs):
|
||||
return await self.acompletion_mock(
|
||||
model=model, messages=messages, tools=tools, **kwargs
|
||||
)
|
||||
|
||||
def completion(self, model, messages, tools, stream, **kwargs):
|
||||
return self.completion_mock(
|
||||
model=model, messages=messages, tools=tools, stream=stream, **kwargs
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_content_async(mock_acompletion, lite_llm_instance):
|
||||
|
||||
async for response in lite_llm_instance.generate_content_async(
|
||||
LLM_REQUEST_WITH_FUNCTION_DECLARATION
|
||||
):
|
||||
assert response.content.role == "model"
|
||||
assert response.content.parts[0].text == "Test response"
|
||||
assert response.content.parts[1].function_call.name == "test_function"
|
||||
assert response.content.parts[1].function_call.args == {
|
||||
"test_arg": "test_value"
|
||||
}
|
||||
assert response.content.parts[1].function_call.id == "test_tool_call_id"
|
||||
|
||||
mock_acompletion.assert_called_once()
|
||||
|
||||
_, kwargs = mock_acompletion.call_args
|
||||
assert kwargs["model"] == "test_model"
|
||||
assert kwargs["messages"][0]["role"] == "user"
|
||||
assert kwargs["messages"][0]["content"] == "Test prompt"
|
||||
assert kwargs["tools"][0]["function"]["name"] == "test_function"
|
||||
assert (
|
||||
kwargs["tools"][0]["function"]["description"]
|
||||
== "Test function description"
|
||||
)
|
||||
assert (
|
||||
kwargs["tools"][0]["function"]["parameters"]["properties"]["test_arg"][
|
||||
"type"
|
||||
]
|
||||
== "string"
|
||||
)
|
||||
|
||||
|
||||
function_declaration_test_cases = [
|
||||
(
|
||||
"simple_function",
|
||||
types.FunctionDeclaration(
|
||||
name="test_function",
|
||||
description="Test function description",
|
||||
parameters=types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"test_arg": types.Schema(type=types.Type.STRING),
|
||||
"array_arg": types.Schema(
|
||||
type=types.Type.ARRAY,
|
||||
items=types.Schema(
|
||||
type=types.Type.STRING,
|
||||
),
|
||||
),
|
||||
"nested_arg": types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"nested_key1": types.Schema(type=types.Type.STRING),
|
||||
"nested_key2": types.Schema(type=types.Type.STRING),
|
||||
},
|
||||
),
|
||||
},
|
||||
),
|
||||
),
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_function",
|
||||
"description": "Test function description",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"test_arg": {"type": "string"},
|
||||
"array_arg": {
|
||||
"items": {"type": "string"},
|
||||
"type": "array",
|
||||
},
|
||||
"nested_arg": {
|
||||
"properties": {
|
||||
"nested_key1": {"type": "string"},
|
||||
"nested_key2": {"type": "string"},
|
||||
},
|
||||
"type": "object",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
),
|
||||
(
|
||||
"no_description",
|
||||
types.FunctionDeclaration(
|
||||
name="test_function_no_description",
|
||||
parameters=types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"test_arg": types.Schema(type=types.Type.STRING),
|
||||
},
|
||||
),
|
||||
),
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_function_no_description",
|
||||
"description": "",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"test_arg": {"type": "string"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
),
|
||||
(
|
||||
"empty_parameters",
|
||||
types.FunctionDeclaration(
|
||||
name="test_function_empty_params",
|
||||
parameters=types.Schema(type=types.Type.OBJECT, properties={}),
|
||||
),
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_function_empty_params",
|
||||
"description": "",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
},
|
||||
},
|
||||
},
|
||||
),
|
||||
(
|
||||
"nested_array",
|
||||
types.FunctionDeclaration(
|
||||
name="test_function_nested_array",
|
||||
parameters=types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"array_arg": types.Schema(
|
||||
type=types.Type.ARRAY,
|
||||
items=types.Schema(
|
||||
type=types.Type.OBJECT,
|
||||
properties={
|
||||
"nested_key": types.Schema(
|
||||
type=types.Type.STRING
|
||||
)
|
||||
},
|
||||
),
|
||||
),
|
||||
},
|
||||
),
|
||||
),
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_function_nested_array",
|
||||
"description": "",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"array_arg": {
|
||||
"items": {
|
||||
"properties": {
|
||||
"nested_key": {"type": "string"}
|
||||
},
|
||||
"type": "object",
|
||||
},
|
||||
"type": "array",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"_, function_declaration, expected_output",
|
||||
function_declaration_test_cases,
|
||||
ids=[case[0] for case in function_declaration_test_cases],
|
||||
)
|
||||
def test_function_declaration_to_tool_param(
|
||||
_, function_declaration, expected_output
|
||||
):
|
||||
assert (
|
||||
_function_declaration_to_tool_param(function_declaration)
|
||||
== expected_output
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_content_async_with_system_instruction(
|
||||
lite_llm_instance, mock_acompletion
|
||||
):
|
||||
mock_response_with_system_instruction = ModelResponse(
|
||||
choices=[
|
||||
Choices(
|
||||
message=ChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content="Test response",
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
mock_acompletion.return_value = mock_response_with_system_instruction
|
||||
|
||||
llm_request = LlmRequest(
|
||||
contents=[
|
||||
types.Content(
|
||||
role="user", parts=[types.Part.from_text(text="Test prompt")]
|
||||
)
|
||||
],
|
||||
config=types.GenerateContentConfig(
|
||||
system_instruction="Test system instruction"
|
||||
),
|
||||
)
|
||||
|
||||
async for response in lite_llm_instance.generate_content_async(llm_request):
|
||||
assert response.content.role == "model"
|
||||
assert response.content.parts[0].text == "Test response"
|
||||
|
||||
mock_acompletion.assert_called_once()
|
||||
|
||||
_, kwargs = mock_acompletion.call_args
|
||||
assert kwargs["model"] == "test_model"
|
||||
assert kwargs["messages"][0]["role"] == "developer"
|
||||
assert kwargs["messages"][0]["content"] == "Test system instruction"
|
||||
assert kwargs["messages"][1]["role"] == "user"
|
||||
assert kwargs["messages"][1]["content"] == "Test prompt"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_content_async_with_tool_response(
|
||||
lite_llm_instance, mock_acompletion
|
||||
):
|
||||
mock_response_with_tool_response = ModelResponse(
|
||||
choices=[
|
||||
Choices(
|
||||
message=ChatCompletionAssistantMessage(
|
||||
role="tool",
|
||||
content='{"result": "test_result"}',
|
||||
tool_call_id="test_tool_call_id",
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
mock_acompletion.return_value = mock_response_with_tool_response
|
||||
|
||||
llm_request = LlmRequest(
|
||||
contents=[
|
||||
types.Content(
|
||||
role="user", parts=[types.Part.from_text(text="Test prompt")]
|
||||
),
|
||||
types.Content(
|
||||
role="tool",
|
||||
parts=[
|
||||
types.Part.from_function_response(
|
||||
name="test_function",
|
||||
response={"result": "test_result"},
|
||||
)
|
||||
],
|
||||
),
|
||||
],
|
||||
config=types.GenerateContentConfig(
|
||||
system_instruction="test instruction",
|
||||
),
|
||||
)
|
||||
async for response in lite_llm_instance.generate_content_async(llm_request):
|
||||
assert response.content.role == "model"
|
||||
assert response.content.parts[0].text == '{"result": "test_result"}'
|
||||
|
||||
mock_acompletion.assert_called_once()
|
||||
|
||||
_, kwargs = mock_acompletion.call_args
|
||||
assert kwargs["model"] == "test_model"
|
||||
|
||||
assert kwargs["messages"][2]["role"] == "tool"
|
||||
assert kwargs["messages"][2]["content"] == '{"result": "test_result"}'
|
||||
|
||||
|
||||
def test_content_to_message_param_user_message():
|
||||
content = types.Content(
|
||||
role="user", parts=[types.Part.from_text(text="Test prompt")]
|
||||
)
|
||||
message = _content_to_message_param(content)
|
||||
assert message["role"] == "user"
|
||||
assert message["content"] == "Test prompt"
|
||||
|
||||
|
||||
def test_content_to_message_param_assistant_message():
|
||||
content = types.Content(
|
||||
role="assistant", parts=[types.Part.from_text(text="Test response")]
|
||||
)
|
||||
message = _content_to_message_param(content)
|
||||
assert message["role"] == "assistant"
|
||||
assert message["content"] == "Test response"
|
||||
|
||||
|
||||
def test_content_to_message_param_function_call():
|
||||
content = types.Content(
|
||||
role="assistant",
|
||||
parts=[
|
||||
types.Part.from_function_call(
|
||||
name="test_function", args={"test_arg": "test_value"}
|
||||
)
|
||||
],
|
||||
)
|
||||
content.parts[0].function_call.id = "test_tool_call_id"
|
||||
message = _content_to_message_param(content)
|
||||
assert message["role"] == "assistant"
|
||||
assert message["content"] == []
|
||||
assert message["tool_calls"][0].type == "function"
|
||||
assert message["tool_calls"][0].id == "test_tool_call_id"
|
||||
assert message["tool_calls"][0].function.name == "test_function"
|
||||
assert (
|
||||
message["tool_calls"][0].function.arguments
|
||||
== '{"test_arg": "test_value"}'
|
||||
)
|
||||
|
||||
|
||||
def test_message_to_generate_content_response_text():
|
||||
message = ChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content="Test response",
|
||||
)
|
||||
response = _message_to_generate_content_response(message)
|
||||
assert response.content.role == "model"
|
||||
assert response.content.parts[0].text == "Test response"
|
||||
|
||||
|
||||
def test_message_to_generate_content_response_tool_call():
|
||||
message = ChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content=None,
|
||||
tool_calls=[
|
||||
ChatCompletionMessageToolCall(
|
||||
type="function",
|
||||
id="test_tool_call_id",
|
||||
function=Function(
|
||||
name="test_function",
|
||||
arguments='{"test_arg": "test_value"}',
|
||||
),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
response = _message_to_generate_content_response(message)
|
||||
assert response.content.role == "model"
|
||||
assert response.content.parts[0].function_call.name == "test_function"
|
||||
assert response.content.parts[0].function_call.args == {
|
||||
"test_arg": "test_value"
|
||||
}
|
||||
assert response.content.parts[0].function_call.id == "test_tool_call_id"
|
||||
|
||||
|
||||
def test_get_content_text():
|
||||
parts = [types.Part.from_text(text="Test text")]
|
||||
content = _get_content(parts)
|
||||
assert content == "Test text"
|
||||
|
||||
|
||||
def test_get_content_image():
|
||||
parts = [
|
||||
types.Part.from_bytes(data=b"test_image_data", mime_type="image/png")
|
||||
]
|
||||
content = _get_content(parts)
|
||||
assert content[0]["type"] == "image_url"
|
||||
assert content[0]["image_url"] == ""
|
||||
|
||||
|
||||
def test_get_content_video():
|
||||
parts = [
|
||||
types.Part.from_bytes(data=b"test_video_data", mime_type="video/mp4")
|
||||
]
|
||||
content = _get_content(parts)
|
||||
assert content[0]["type"] == "video_url"
|
||||
assert content[0]["video_url"] == "data:video/mp4;base64,dGVzdF92aWRlb19kYXRh"
|
||||
|
||||
|
||||
def test_to_litellm_role():
|
||||
assert _to_litellm_role("model") == "assistant"
|
||||
assert _to_litellm_role("assistant") == "assistant"
|
||||
assert _to_litellm_role("user") == "user"
|
||||
assert _to_litellm_role(None) == "user"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"response, expected_chunk, expected_finished",
|
||||
[
|
||||
(
|
||||
ModelResponse(
|
||||
choices=[
|
||||
{
|
||||
"message": {
|
||||
"content": "this is a test",
|
||||
}
|
||||
}
|
||||
]
|
||||
),
|
||||
TextChunk(text="this is a test"),
|
||||
"stop",
|
||||
),
|
||||
(
|
||||
ModelResponse(
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
delta=Delta(
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
type="function",
|
||||
id="1",
|
||||
function=Function(
|
||||
name="test_function",
|
||||
arguments='{"key": "va',
|
||||
),
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
),
|
||||
)
|
||||
]
|
||||
),
|
||||
FunctionChunk(id="1", name="test_function", args='{"key": "va'),
|
||||
None,
|
||||
),
|
||||
(
|
||||
ModelResponse(choices=[{"finish_reason": "tool_calls"}]),
|
||||
None,
|
||||
"tool_calls",
|
||||
),
|
||||
(ModelResponse(choices=[{}]), None, "stop"),
|
||||
],
|
||||
)
|
||||
def test_model_response_to_chunk(response, expected_chunk, expected_finished):
|
||||
result = list(_model_response_to_chunk(response))
|
||||
assert len(result) == 1
|
||||
chunk, finished = result[0]
|
||||
if expected_chunk:
|
||||
assert isinstance(chunk, type(expected_chunk))
|
||||
assert chunk == expected_chunk
|
||||
else:
|
||||
assert chunk is None
|
||||
assert finished == expected_finished
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_acompletion_additional_args(mock_acompletion, mock_client):
|
||||
lite_llm_instance = LiteLlm(
|
||||
# valid args
|
||||
model="test_model",
|
||||
llm_client=mock_client,
|
||||
api_key="test_key",
|
||||
api_base="some://url",
|
||||
api_version="2024-09-12",
|
||||
# invalid args (ignored)
|
||||
stream=True,
|
||||
messages=[{"role": "invalid", "content": "invalid"}],
|
||||
tools=[{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "invalid",
|
||||
},
|
||||
}],
|
||||
)
|
||||
|
||||
async for response in lite_llm_instance.generate_content_async(
|
||||
LLM_REQUEST_WITH_FUNCTION_DECLARATION
|
||||
):
|
||||
assert response.content.role == "model"
|
||||
assert response.content.parts[0].text == "Test response"
|
||||
assert response.content.parts[1].function_call.name == "test_function"
|
||||
assert response.content.parts[1].function_call.args == {
|
||||
"test_arg": "test_value"
|
||||
}
|
||||
assert response.content.parts[1].function_call.id == "test_tool_call_id"
|
||||
|
||||
mock_acompletion.assert_called_once()
|
||||
|
||||
_, kwargs = mock_acompletion.call_args
|
||||
|
||||
assert kwargs["model"] == "test_model"
|
||||
assert kwargs["messages"][0]["role"] == "user"
|
||||
assert kwargs["messages"][0]["content"] == "Test prompt"
|
||||
assert kwargs["tools"][0]["function"]["name"] == "test_function"
|
||||
assert "stream" not in kwargs
|
||||
assert "llm_client" not in kwargs
|
||||
assert kwargs["api_base"] == "some://url"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_additional_args(mock_completion, mock_client):
|
||||
lite_llm_instance = LiteLlm(
|
||||
# valid args
|
||||
model="test_model",
|
||||
llm_client=mock_client,
|
||||
api_key="test_key",
|
||||
api_base="some://url",
|
||||
api_version="2024-09-12",
|
||||
# invalid args (ignored)
|
||||
stream=False,
|
||||
messages=[{"role": "invalid", "content": "invalid"}],
|
||||
tools=[{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "invalid",
|
||||
},
|
||||
}],
|
||||
)
|
||||
|
||||
mock_completion.return_value = iter(STREAMING_MODEL_RESPONSE)
|
||||
|
||||
responses = [
|
||||
response
|
||||
async for response in lite_llm_instance.generate_content_async(
|
||||
LLM_REQUEST_WITH_FUNCTION_DECLARATION, stream=True
|
||||
)
|
||||
]
|
||||
assert len(responses) == 4
|
||||
mock_completion.assert_called_once()
|
||||
|
||||
_, kwargs = mock_completion.call_args
|
||||
|
||||
assert kwargs["model"] == "test_model"
|
||||
assert kwargs["messages"][0]["role"] == "user"
|
||||
assert kwargs["messages"][0]["content"] == "Test prompt"
|
||||
assert kwargs["tools"][0]["function"]["name"] == "test_function"
|
||||
assert kwargs["stream"]
|
||||
assert "llm_client" not in kwargs
|
||||
assert kwargs["api_base"] == "some://url"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generate_content_async_stream(
|
||||
mock_completion, lite_llm_instance
|
||||
):
|
||||
|
||||
mock_completion.return_value = iter(STREAMING_MODEL_RESPONSE)
|
||||
|
||||
responses = [
|
||||
response
|
||||
async for response in lite_llm_instance.generate_content_async(
|
||||
LLM_REQUEST_WITH_FUNCTION_DECLARATION, stream=True
|
||||
)
|
||||
]
|
||||
assert len(responses) == 4
|
||||
assert responses[0].content.role == "model"
|
||||
assert responses[0].content.parts[0].text == "zero, "
|
||||
assert responses[1].content.role == "model"
|
||||
assert responses[1].content.parts[0].text == "one, "
|
||||
assert responses[2].content.role == "model"
|
||||
assert responses[2].content.parts[0].text == "two:"
|
||||
assert responses[3].content.role == "model"
|
||||
assert responses[3].content.parts[0].function_call.name == "test_function"
|
||||
assert responses[3].content.parts[0].function_call.args == {
|
||||
"test_arg": "test_value"
|
||||
}
|
||||
assert responses[3].content.parts[0].function_call.id == "test_tool_call_id"
|
||||
mock_completion.assert_called_once()
|
||||
|
||||
_, kwargs = mock_completion.call_args
|
||||
assert kwargs["model"] == "test_model"
|
||||
assert kwargs["messages"][0]["role"] == "user"
|
||||
assert kwargs["messages"][0]["content"] == "Test prompt"
|
||||
assert kwargs["tools"][0]["function"]["name"] == "test_function"
|
||||
assert (
|
||||
kwargs["tools"][0]["function"]["description"]
|
||||
== "Test function description"
|
||||
)
|
||||
assert (
|
||||
kwargs["tools"][0]["function"]["parameters"]["properties"]["test_arg"][
|
||||
"type"
|
||||
]
|
||||
== "string"
|
||||
)
|
||||
60
tests/unittests/models/test_models.py
Normal file
60
tests/unittests/models/test_models.py
Normal file
@@ -0,0 +1,60 @@
|
||||
# Copyright 2025 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from google.adk import models
|
||||
from google.adk.models.anthropic_llm import Claude
|
||||
from google.adk.models.google_llm import Gemini
|
||||
from google.adk.models.registry import LLMRegistry
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'gemini-1.5-flash',
|
||||
'gemini-1.5-flash-001',
|
||||
'gemini-1.5-flash-002',
|
||||
'gemini-1.5-pro',
|
||||
'gemini-1.5-pro-001',
|
||||
'gemini-1.5-pro-002',
|
||||
'gemini-2.0-flash-exp',
|
||||
'projects/123456/locations/us-central1/endpoints/123456', # finetuned vertex gemini endpoint
|
||||
'projects/123456/locations/us-central1/publishers/google/models/gemini-2.0-flash-exp', # vertex gemini long name
|
||||
],
|
||||
)
|
||||
def test_match_gemini_family(model_name):
|
||||
assert models.LLMRegistry.resolve(model_name) is Gemini
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'claude-3-5-haiku@20241022',
|
||||
'claude-3-5-sonnet-v2@20241022',
|
||||
'claude-3-5-sonnet@20240620',
|
||||
'claude-3-haiku@20240307',
|
||||
'claude-3-opus@20240229',
|
||||
'claude-3-sonnet@20240229',
|
||||
],
|
||||
)
|
||||
def test_match_claude_family(model_name):
|
||||
LLMRegistry.register(Claude)
|
||||
|
||||
assert models.LLMRegistry.resolve(model_name) is Claude
|
||||
|
||||
|
||||
def test_non_exist_model():
|
||||
with pytest.raises(ValueError) as e_info:
|
||||
models.LLMRegistry.resolve('non-exist-model')
|
||||
assert 'Model non-exist-model not found.' in str(e_info.value)
|
||||
Reference in New Issue
Block a user