365 lines
13 KiB
Python
365 lines
13 KiB
Python
"""
|
|
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
|
SPDX-License-Identifier: MIT
|
|
"""
|
|
|
|
import argparse
|
|
import glob
|
|
import os
|
|
|
|
import cv2
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, VisionEncoderDecoderModel
|
|
|
|
from utils.utils import *
|
|
|
|
|
|
class DOLPHIN:
|
|
def __init__(self, model_id_or_path):
|
|
"""Initialize the Hugging Face model
|
|
|
|
Args:
|
|
model_id_or_path: Path to local model or Hugging Face model ID
|
|
"""
|
|
# Load model from local path or Hugging Face hub
|
|
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
|
|
self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
|
|
self.model.eval()
|
|
|
|
# Set device and precision
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.model.to(self.device)
|
|
self.model = self.model.half() # Always use half precision by default
|
|
|
|
# set tokenizer
|
|
self.tokenizer = self.processor.tokenizer
|
|
|
|
def chat(self, prompt, image):
|
|
"""Process an image or batch of images with the given prompt(s)
|
|
|
|
Args:
|
|
prompt: Text prompt or list of prompts to guide the model
|
|
image: PIL Image or list of PIL Images to process
|
|
|
|
Returns:
|
|
Generated text or list of texts from the model
|
|
"""
|
|
# Check if we're dealing with a batch
|
|
is_batch = isinstance(image, list)
|
|
|
|
if not is_batch:
|
|
# Single image, wrap it in a list for consistent processing
|
|
images = [image]
|
|
prompts = [prompt]
|
|
else:
|
|
# Batch of images
|
|
images = image
|
|
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
|
|
|
# Prepare image
|
|
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
|
|
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
|
|
|
|
# Prepare prompt
|
|
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
|
batch_prompt_inputs = self.tokenizer(
|
|
prompts,
|
|
add_special_tokens=False,
|
|
return_tensors="pt"
|
|
)
|
|
|
|
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
|
|
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
|
|
|
|
# Generate text
|
|
outputs = self.model.generate(
|
|
pixel_values=batch_pixel_values,
|
|
decoder_input_ids=batch_prompt_ids,
|
|
decoder_attention_mask=batch_attention_mask,
|
|
min_length=1,
|
|
max_length=4096,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
eos_token_id=self.tokenizer.eos_token_id,
|
|
use_cache=True,
|
|
bad_words_ids=[[self.tokenizer.unk_token_id]],
|
|
return_dict_in_generate=True,
|
|
do_sample=False,
|
|
num_beams=1,
|
|
repetition_penalty=1.1
|
|
)
|
|
|
|
# Process output
|
|
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
|
|
|
# Clean prompt text from output
|
|
results = []
|
|
for i, sequence in enumerate(sequences):
|
|
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
|
results.append(cleaned)
|
|
|
|
# Return a single result for single image input
|
|
if not is_batch:
|
|
return results[0]
|
|
return results
|
|
|
|
|
|
def process_document(document_path, model, save_dir, max_batch_size=None):
|
|
"""Parse documents with two stages - Handles both images and PDFs"""
|
|
file_ext = os.path.splitext(document_path)[1].lower()
|
|
|
|
if file_ext == '.pdf':
|
|
# Process PDF file
|
|
# Convert PDF to images
|
|
images = convert_pdf_to_images(document_path)
|
|
if not images:
|
|
raise Exception(f"Failed to convert PDF {document_path} to images")
|
|
|
|
all_results = []
|
|
|
|
# Process each page
|
|
for page_idx, pil_image in enumerate(images):
|
|
print(f"Processing page {page_idx + 1}/{len(images)}")
|
|
|
|
# Generate output name for this page
|
|
base_name = os.path.splitext(os.path.basename(document_path))[0]
|
|
page_name = f"{base_name}_page_{page_idx + 1:03d}"
|
|
|
|
# Process this page (don't save individual page results)
|
|
json_path, recognition_results = process_single_image(
|
|
pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
|
|
)
|
|
|
|
# Add page information to results
|
|
page_results = {
|
|
"page_number": page_idx + 1,
|
|
"elements": recognition_results
|
|
}
|
|
all_results.append(page_results)
|
|
|
|
# Save combined results for multi-page PDF
|
|
combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
|
|
|
|
return combined_json_path, all_results
|
|
|
|
else:
|
|
# Process regular image file
|
|
pil_image = Image.open(document_path).convert("RGB")
|
|
base_name = os.path.splitext(os.path.basename(document_path))[0]
|
|
return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)
|
|
|
|
|
|
def process_single_image(image, model, save_dir, image_name, max_batch_size=None, save_individual=True):
|
|
"""Process a single image (either from file or converted from PDF page)
|
|
|
|
Args:
|
|
image: PIL Image object
|
|
model: DOLPHIN model instance
|
|
save_dir: Directory to save results
|
|
image_name: Name for the output file
|
|
max_batch_size: Maximum batch size for processing
|
|
save_individual: Whether to save individual results (False for PDF pages)
|
|
|
|
Returns:
|
|
Tuple of (json_path, recognition_results)
|
|
"""
|
|
# Stage 1: Page-level layout and reading order parsing
|
|
layout_output = model.chat("Parse the reading order of this document.", image)
|
|
|
|
# Stage 2: Element-level content parsing
|
|
padded_image, dims = prepare_image(image)
|
|
recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)
|
|
|
|
# Save outputs only if requested (skip for PDF pages)
|
|
json_path = None
|
|
if save_individual:
|
|
# Create a dummy image path for save_outputs function
|
|
dummy_image_path = f"{image_name}.jpg" # Extension doesn't matter, only basename is used
|
|
json_path = save_outputs(recognition_results, dummy_image_path, save_dir)
|
|
|
|
return json_path, recognition_results
|
|
|
|
|
|
def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
|
|
"""Parse all document elements with parallel decoding"""
|
|
layout_results = parse_layout_string(layout_results)
|
|
|
|
# Store text and table elements separately
|
|
text_elements = [] # Text elements
|
|
table_elements = [] # Table elements
|
|
figure_results = [] # Image elements (no processing needed)
|
|
previous_box = None
|
|
reading_order = 0
|
|
|
|
# Collect elements to process and group by type
|
|
for bbox, label in layout_results:
|
|
try:
|
|
# Adjust coordinates
|
|
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
|
bbox, padded_image, dims, previous_box
|
|
)
|
|
|
|
# Crop and parse element
|
|
cropped = padded_image[y1:y2, x1:x2]
|
|
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
|
|
if label == "fig":
|
|
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
|
|
|
figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
|
|
|
|
# For figure regions, store relative path instead of base64
|
|
figure_results.append(
|
|
{
|
|
"label": label,
|
|
"text": f"",
|
|
"figure_path": f"figures/{figure_filename}",
|
|
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
|
"reading_order": reading_order,
|
|
}
|
|
)
|
|
else:
|
|
# Prepare element for parsing
|
|
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
|
element_info = {
|
|
"crop": pil_crop,
|
|
"label": label,
|
|
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
|
"reading_order": reading_order,
|
|
}
|
|
|
|
# Group by type
|
|
if label == "tab":
|
|
table_elements.append(element_info)
|
|
else: # Text elements
|
|
text_elements.append(element_info)
|
|
|
|
reading_order += 1
|
|
|
|
except Exception as e:
|
|
print(f"Error processing bbox with label {label}: {str(e)}")
|
|
continue
|
|
|
|
# Initialize results list
|
|
recognition_results = figure_results.copy()
|
|
|
|
# Process text elements (in batches)
|
|
if text_elements:
|
|
text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
|
|
recognition_results.extend(text_results)
|
|
|
|
# Process table elements (in batches)
|
|
if table_elements:
|
|
table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
|
|
recognition_results.extend(table_results)
|
|
|
|
# Sort elements by reading order
|
|
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
|
|
|
return recognition_results
|
|
|
|
|
|
def process_element_batch(elements, model, prompt, max_batch_size=None):
|
|
"""Process elements of the same type in batches"""
|
|
results = []
|
|
|
|
# Determine batch size
|
|
batch_size = len(elements)
|
|
if max_batch_size is not None and max_batch_size > 0:
|
|
batch_size = min(batch_size, max_batch_size)
|
|
|
|
# Process in batches
|
|
for i in range(0, len(elements), batch_size):
|
|
batch_elements = elements[i:i+batch_size]
|
|
crops_list = [elem["crop"] for elem in batch_elements]
|
|
|
|
# Use the same prompt for all elements in the batch
|
|
prompts_list = [prompt] * len(crops_list)
|
|
|
|
# Batch inference
|
|
batch_results = model.chat(prompts_list, crops_list)
|
|
|
|
# Add results
|
|
for j, result in enumerate(batch_results):
|
|
elem = batch_elements[j]
|
|
results.append({
|
|
"label": elem["label"],
|
|
"bbox": elem["bbox"],
|
|
"text": result.strip(),
|
|
"reading_order": elem["reading_order"],
|
|
})
|
|
|
|
return results
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
|
|
parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
|
|
parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default=None,
|
|
help="Directory to save parsing results (default: same as input directory)",
|
|
)
|
|
parser.add_argument(
|
|
"--max_batch_size",
|
|
type=int,
|
|
default=16,
|
|
help="Maximum number of document elements to parse in a single batch (default: 16)",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
# Load Model
|
|
model = DOLPHIN(args.model_path)
|
|
|
|
# Collect Document Files (images and PDFs)
|
|
if os.path.isdir(args.input_path):
|
|
# Support both image and PDF files
|
|
file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
|
|
|
|
document_files = []
|
|
for ext in file_extensions:
|
|
document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
|
|
document_files = sorted(document_files)
|
|
else:
|
|
if not os.path.exists(args.input_path):
|
|
raise FileNotFoundError(f"Input path {args.input_path} does not exist")
|
|
|
|
# Check if it's a supported file type
|
|
file_ext = os.path.splitext(args.input_path)[1].lower()
|
|
supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
|
|
|
|
if file_ext not in supported_exts:
|
|
raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
|
|
|
|
document_files = [args.input_path]
|
|
|
|
save_dir = args.save_dir or (
|
|
args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
|
|
)
|
|
setup_output_dirs(save_dir)
|
|
|
|
total_samples = len(document_files)
|
|
print(f"\nTotal files to process: {total_samples}")
|
|
|
|
# Process All Document Files
|
|
for file_path in document_files:
|
|
print(f"\nProcessing {file_path}")
|
|
try:
|
|
json_path, recognition_results = process_document(
|
|
document_path=file_path,
|
|
model=model,
|
|
save_dir=save_dir,
|
|
max_batch_size=args.max_batch_size,
|
|
)
|
|
|
|
print(f"Processing completed. Results saved to {save_dir}")
|
|
|
|
except Exception as e:
|
|
print(f"Error processing {file_path}: {str(e)}")
|
|
continue
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|