Dolphin/demo_page_hf.py
2025-07-01 15:34:02 +08:00

365 lines
13 KiB
Python

"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import argparse
import glob
import os
import cv2
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import *
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model
Args:
model_id_or_path: Path to local model or Hugging Face model ID
"""
# Load model from local path or Hugging Face hub
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
self.model.eval()
# Set device and precision
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model = self.model.half() # Always use half precision by default
# set tokenizer
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image or batch of images with the given prompt(s)
Args:
prompt: Text prompt or list of prompts to guide the model
image: PIL Image or list of PIL Images to process
Returns:
Generated text or list of texts from the model
"""
# Check if we're dealing with a batch
is_batch = isinstance(image, list)
if not is_batch:
# Single image, wrap it in a list for consistent processing
images = [image]
prompts = [prompt]
else:
# Batch of images
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# Prepare image
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
# Prepare prompt
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
# Generate text
outputs = self.model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
# Process output
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# Clean prompt text from output
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# Return a single result for single image input
if not is_batch:
return results[0]
return results
def process_document(document_path, model, save_dir, max_batch_size=None):
"""Parse documents with two stages - Handles both images and PDFs"""
file_ext = os.path.splitext(document_path)[1].lower()
if file_ext == '.pdf':
# Process PDF file
# Convert PDF to images
images = convert_pdf_to_images(document_path)
if not images:
raise Exception(f"Failed to convert PDF {document_path} to images")
all_results = []
# Process each page
for page_idx, pil_image in enumerate(images):
print(f"Processing page {page_idx + 1}/{len(images)}")
# Generate output name for this page
base_name = os.path.splitext(os.path.basename(document_path))[0]
page_name = f"{base_name}_page_{page_idx + 1:03d}"
# Process this page (don't save individual page results)
json_path, recognition_results = process_single_image(
pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
)
# Add page information to results
page_results = {
"page_number": page_idx + 1,
"elements": recognition_results
}
all_results.append(page_results)
# Save combined results for multi-page PDF
combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
return combined_json_path, all_results
else:
# Process regular image file
pil_image = Image.open(document_path).convert("RGB")
base_name = os.path.splitext(os.path.basename(document_path))[0]
return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)
def process_single_image(image, model, save_dir, image_name, max_batch_size=None, save_individual=True):
"""Process a single image (either from file or converted from PDF page)
Args:
image: PIL Image object
model: DOLPHIN model instance
save_dir: Directory to save results
image_name: Name for the output file
max_batch_size: Maximum batch size for processing
save_individual: Whether to save individual results (False for PDF pages)
Returns:
Tuple of (json_path, recognition_results)
"""
# Stage 1: Page-level layout and reading order parsing
layout_output = model.chat("Parse the reading order of this document.", image)
# Stage 2: Element-level content parsing
padded_image, dims = prepare_image(image)
recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)
# Save outputs only if requested (skip for PDF pages)
json_path = None
if save_individual:
# Create a dummy image path for save_outputs function
dummy_image_path = f"{image_name}.jpg" # Extension doesn't matter, only basename is used
json_path = save_outputs(recognition_results, dummy_image_path, save_dir)
return json_path, recognition_results
def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
"""Parse all document elements with parallel decoding"""
layout_results = parse_layout_string(layout_results)
# Store text and table elements separately
text_elements = [] # Text elements
table_elements = [] # Table elements
figure_results = [] # Image elements (no processing needed)
previous_box = None
reading_order = 0
# Collect elements to process and group by type
for bbox, label in layout_results:
try:
# Adjust coordinates
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# Crop and parse element
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
if label == "fig":
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
# For figure regions, store relative path instead of base64
figure_results.append(
{
"label": label,
"text": f"![Figure](figures/{figure_filename})",
"figure_path": f"figures/{figure_filename}",
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
)
else:
# Prepare element for parsing
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# Group by type
if label == "tab":
table_elements.append(element_info)
else: # Text elements
text_elements.append(element_info)
reading_order += 1
except Exception as e:
print(f"Error processing bbox with label {label}: {str(e)}")
continue
# Initialize results list
recognition_results = figure_results.copy()
# Process text elements (in batches)
if text_elements:
text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# Process table elements (in batches)
if table_elements:
table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# Sort elements by reading order
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def process_element_batch(elements, model, prompt, max_batch_size=None):
"""Process elements of the same type in batches"""
results = []
# Determine batch size
batch_size = len(elements)
if max_batch_size is not None and max_batch_size > 0:
batch_size = min(batch_size, max_batch_size)
# Process in batches
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# Use the same prompt for all elements in the batch
prompts_list = [prompt] * len(crops_list)
# Batch inference
batch_results = model.chat(prompts_list, crops_list)
# Add results
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
def main():
parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="Directory to save parsing results (default: same as input directory)",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=16,
help="Maximum number of document elements to parse in a single batch (default: 16)",
)
args = parser.parse_args()
# Load Model
model = DOLPHIN(args.model_path)
# Collect Document Files (images and PDFs)
if os.path.isdir(args.input_path):
# Support both image and PDF files
file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
document_files = []
for ext in file_extensions:
document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
document_files = sorted(document_files)
else:
if not os.path.exists(args.input_path):
raise FileNotFoundError(f"Input path {args.input_path} does not exist")
# Check if it's a supported file type
file_ext = os.path.splitext(args.input_path)[1].lower()
supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
if file_ext not in supported_exts:
raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
document_files = [args.input_path]
save_dir = args.save_dir or (
args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
)
setup_output_dirs(save_dir)
total_samples = len(document_files)
print(f"\nTotal files to process: {total_samples}")
# Process All Document Files
for file_path in document_files:
print(f"\nProcessing {file_path}")
try:
json_path, recognition_results = process_document(
document_path=file_path,
model=model,
save_dir=save_dir,
max_batch_size=args.max_batch_size,
)
print(f"Processing completed. Results saved to {save_dir}")
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
continue
if __name__ == "__main__":
main()