Dolphin/utils/model.py
2025-05-26 23:20:51 +08:00

478 lines
16 KiB
Python

"""
Copyright (c) 2022-present NAVER Corp.
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
MIT License
This file has been modified by [ByteDance Ltd. and/or its affiliates] on 20250118.
The original file available at https://github.com/clovaai/donut/blob/master/donut/model.py was released under the MIT license.
This modified file is released under the same license.
"""
import logging
from collections import defaultdict
from typing import List, Optional
import torch
import torch.nn.functional as F
from PIL import Image
from timm.models.swin_transformer import SwinTransformer
from torch import nn
from transformers import (
MBartConfig,
MBartForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers.file_utils import ModelOutput
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel
class SwinEncoder(nn.Module):
r"""
Encoder based on SwinTransformer
Set the initial weights and configuration with a pretrained SwinTransformer and then
modify the detailed configurations
Args:
input_size: Input image size (width, height)
align_long_axis: Whether to rotate image if height is greater than width
window_size: Window size(=patch size) of SwinTransformer
encoder_layer: Number of layers of SwinTransformer encoder
name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local.
otherwise, `swin_base_patch4_window12_384` will be set (using `timm`).
"""
def __init__(
self,
input_size,
align_long_axis: bool = False,
window_size: int = 7,
encoder_layer: List[int] = [2, 2, 14, 2],
patch_size: int = [4, 4],
embed_dim: int = 128,
num_heads: List[int] = [4, 8, 16, 32],
):
super().__init__()
if isinstance(input_size, int):
input_size = [input_size, input_size]
self.input_size = input_size
self.align_long_axis = align_long_axis
self.window_size = window_size
self.encoder_layer = encoder_layer
self.patch_size = patch_size
self.embed_dim = embed_dim
self.num_heads = num_heads
self.model = SwinTransformer(
img_size=self.input_size,
depths=self.encoder_layer,
window_size=self.window_size,
patch_size=self.patch_size,
embed_dim=self.embed_dim,
num_heads=self.num_heads,
num_classes=0,
)
def forward(self, x: torch.Tensor, text_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Args:
x: (batch_size, num_channels, height, width)
"""
x = self.model.patch_embed(x)
x = self.model.pos_drop(x)
x = self.model.layers(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def _set_dtype(self, dtype):
self._dtype = dtype
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(dtype=self._dtype))
return ret.type(orig_type)
class BARTDecoder(nn.Module):
"""
Decoder based on Multilingual BART
Set the initial weights and configuration with a pretrained multilingual BART model,
and modify the detailed configurations as a Donut decoder
Args:
decoder_layer:
Number of layers of BARTDecoder
max_position_embeddings:
The maximum sequence length to be trained
name_or_path:
Name of a pretrained model name either registered in huggingface.co. or saved in local,
otherwise, `facebook/mbart-large-50` will be set (using `transformers`)
"""
def __init__(
self,
tokenizer,
decoder_layer: int,
max_position_embeddings: int,
hidden_dimension: int = 1024,
**kwargs,
):
super().__init__()
self.decoder_layer = decoder_layer
self.max_position_embeddings = max_position_embeddings
self.hidden_dimension = hidden_dimension
self.tokenizer = tokenizer
self.model = MBartForCausalLM(
config=MBartConfig(
tie_word_embeddings=True,
is_decoder=True,
is_encoder_decoder=False,
add_cross_attention=True,
decoder_layers=self.decoder_layer,
max_position_embeddings=self.max_position_embeddings,
vocab_size=len(self.tokenizer),
scale_embedding=True,
add_final_layer_norm=True,
d_model=self.hidden_dimension,
)
)
# self.model.config.is_encoder_decoder = True # to get cross-attention
self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id
self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference
def add_special_tokens(self, list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings
"""
newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))})
if newly_added_num > 0:
self.model.resize_token_embeddings(len(self.tokenizer))
def add_tokens(self, list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings
"""
newly_added_num = self.tokenizer.add_tokens(sorted(set(list_of_tokens)))
if newly_added_num > 0:
self.model.resize_token_embeddings(len(self.tokenizer))
def prepare_inputs_for_inference(
self,
input_ids: torch.Tensor,
encoder_outputs: torch.Tensor,
past=None,
past_key_values=None,
use_cache: bool = None,
attention_mask: torch.Tensor = None,
**kwargs,
):
"""
Args:
input_ids: (batch_size, sequence_length)
Returns:
input_ids: (batch_size, sequence_length)
attention_mask: (batch_size, sequence_length)
encoder_hidden_states: (batch_size, sequence_length, embedding_dim)
"""
attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
past = past or past_key_values
if past is not None:
input_ids = input_ids[:, -1:]
output = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
"encoder_hidden_states": encoder_outputs.last_hidden_state,
}
return output
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_values: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: bool = None,
output_attentions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[torch.Tensor] = None,
return_dict: bool = None,
):
return self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
encoder_hidden_states=encoder_hidden_states,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@staticmethod
def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor:
"""
Resize position embeddings
Truncate if sequence length of MBart backbone is greater than given max_length,
else interpolate to max_length
"""
if weight.shape[0] > max_length:
weight = weight[:max_length, ...]
else:
weight = (
F.interpolate(
weight.permute(1, 0).unsqueeze(0),
size=max_length,
mode="linear",
align_corners=False,
)
.squeeze(0)
.permute(1, 0)
)
return weight
class DonutConfig(PretrainedConfig):
def __init__(
self,
decoder_layer: int = 10,
max_position_embeddings: int = None,
max_length: int = 4096,
hidden_dimension: int = 1024,
**kwargs,
):
super().__init__()
self.decoder_layer = decoder_layer
self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings
self.max_length = max_length
self.hidden_dimension = hidden_dimension
class RunningVarTorch:
def __init__(self, L=15, norm=False):
self.values = None
self.L = L
self.norm = norm
def push(self, x: torch.Tensor):
assert x.dim() == 1
if self.values is None:
self.values = x[:, None]
elif self.values.shape[1] < self.L:
self.values = torch.cat((self.values, x[:, None]), 1)
else:
self.values = torch.cat((self.values[:, 1:], x[:, None]), 1)
def variance(self):
if self.values is None:
return
if self.norm:
return torch.var(self.values, 1) / self.values.shape[1]
else:
return torch.var(self.values, 1)
class StoppingCriteriaScores(StoppingCriteria):
def __init__(self, threshold: float = 0.015, window_size: int = 200):
super().__init__()
self.threshold = threshold
self.vars = RunningVarTorch(norm=True)
self.varvars = RunningVarTorch(L=window_size)
self.stop_inds = defaultdict(int)
self.stopped = defaultdict(bool)
self.size = 0
self.window_size = window_size
@torch.no_grad()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
last_scores = scores[-1]
self.vars.push(last_scores.max(1)[0].float().cpu())
self.varvars.push(self.vars.variance())
self.size += 1
if self.size < self.window_size:
return False
varvar = self.varvars.variance()
for b in range(len(last_scores)):
if varvar[b] < self.threshold:
if self.stop_inds[b] > 0 and not self.stopped[b]:
self.stopped[b] = self.stop_inds[b] >= self.size
else:
self.stop_inds[b] = int(min(max(self.size, 1) * 1.15 + 150 + self.window_size, 4095))
else:
self.stop_inds[b] = 0
self.stopped[b] = False
return all(self.stopped.values()) and len(self.stopped) > 0
def batch(l, b=15):
subs = []
for i in range(len(l) - b):
subs.append(l[i : i + b])
return subs
def subdiv(l, b=10):
subs = []
for i in range(len(l) - b):
subs.append(l[: i + b])
return subs
class DonutModel(PreTrainedModel):
config_class = DonutConfig
base_model_prefix = "donut"
def __init__(self, config: DonutConfig, vision_tower=None, tokenizer=None):
super().__init__(config)
self.config = config
self.tokenizer = tokenizer
self.vpm = vision_tower
# build language model
self.llm = BARTDecoder(
tokenizer=tokenizer,
decoder_layer=self.config.decoder_layer,
max_position_embeddings=self.config.max_position_embeddings,
hidden_dimension=self.config.hidden_dimension,
)
self.ids_to_tokens = {id: content for content, id in self.llm.tokenizer.vocab.items()}
def get_input_embeddings(self, tensor):
return self.llm.model.get_input_embeddings()(tensor)
def forward(
self,
inputs: dict,
):
image_tensors = inputs["pixel_values"]
input_ids = inputs["input_ids"].contiguous()
attention_mask = inputs["attention_mask"]
labels = inputs["labels"].contiguous()
encoder_outputs = self.vpm(
image_tensors,
text_embedding=self.llm.model.get_input_embeddings()(input_ids),
)
decoder_outputs = self.llm(
input_ids=input_ids,
encoder_hidden_states=encoder_outputs,
attention_mask=attention_mask,
labels=labels,
)
return decoder_outputs
def get_hidden_states_during_inference(
self,
prompt_ids: torch.Tensor,
image: Image.Image = None,
image_tensors: Optional[torch.Tensor] = None,
):
if image_tensors is None:
image_tensors = self.vpm.prepare_input(image).unsqueeze(0)
if self.device.type != "mps":
image_tensors = image_tensors.to(next(self.parameters()).dtype)
image_tensors = image_tensors.to(self.device)
prompt_ids = prompt_ids.to(self.device)
all_hidden_states = self.vpm.forward_features(
image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)
)
return all_hidden_states
def get_attn_weights_during_inference(
self,
prompt_ids: torch.Tensor,
image: Image.Image = None,
image_tensors: Optional[torch.Tensor] = None,
):
if image_tensors is None:
image_tensors = self.vpm.prepare_input(image).unsqueeze(0)
if self.device.type != "mps":
image_tensors = image_tensors.to(next(self.parameters()).dtype)
image_tensors = image_tensors.to(self.device)
prompt_ids = prompt_ids.to(self.device)
last_attn_score = self.vpm.get_last_layer_cross_attn_score(
image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)
)
return last_attn_score
def inference(
self,
prompt_ids: torch.Tensor,
image: Image.Image = None,
image_tensors: Optional[torch.Tensor] = None,
return_attentions: bool = False,
early_stopping: bool = True,
):
"""
Generate a token sequence in an auto-regressive manner.
Args:
image: input document image (PIL.Image)
image_tensors: (1, num_channels, height, width)
convert prompt to tensor if image_tensor is not fed
"""
output = {
"predictions": list(),
"sequences": list(),
"repeats": list(),
"repetitions": list(),
}
if image is None and image_tensors is None:
logging.warn("Image not found")
return output
if image_tensors is None:
image_tensors = self.vpm.prepare_input(image).unsqueeze(0)
if self.device.type != "mps":
image_tensors = image_tensors.to(next(self.parameters()).dtype)
image_tensors = image_tensors.to(self.device)
prompt_ids = prompt_ids.to(self.device)
last_hidden_state = self.vpm(image_tensors, text_embedding=self.get_input_embeddings(prompt_ids))
encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None)
if len(encoder_outputs.last_hidden_state.size()) == 1:
encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0)
# get decoder output
decoder_output = self.llm.model.generate(
input_ids=prompt_ids,
encoder_outputs=encoder_outputs,
min_length=1,
max_length=self.config.max_length,
pad_token_id=self.llm.tokenizer.pad_token_id,
eos_token_id=self.llm.tokenizer.eos_token_id,
use_cache=True,
return_dict_in_generate=True,
output_scores=True,
output_attentions=return_attentions,
do_sample=False,
num_beams=1,
stopping_criteria=StoppingCriteriaList([StoppingCriteriaScores()] if early_stopping else []),
)
output["repetitions"] = decoder_output.sequences.clone()
output["sequences"] = decoder_output.sequences.clone()
output["scores"] = torch.stack(decoder_output.scores, 1).softmax(-1).cpu().max(-1)[0]
output["repetitions"] = self.llm.tokenizer.batch_decode(output["repetitions"], skip_special_tokens=False)
return output