
Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training

of networks that are substantially deeper than those used

previously. We explicitly reformulate the layers as learn-

ing residual functions with reference to the layer inputs, in-

stead of learning unreferenced functions. We provide com-

prehensive empirical evidence showing that these residual

networks are easier to optimize, and can gain accuracy from

considerably increased depth. On the ImageNet dataset we

evaluate residual nets with a depth of up to 152 layers—8×
deeper than VGG nets [40] but still having lower complex-

ity. An ensemble of these residual nets achieves 3.57% error

on the ImageNet test set. This result won the 1st place on the

ILSVRC 2015 classification task. We also present analysis

on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance

for many visual recognition tasks. Solely due to our ex-

tremely deep representations, we obtain a 28% relative im-

provement on the COCO object detection dataset. Deep

residual nets are foundations of our submissions to ILSVRC

& COCO 2015 competitions1, where we also won the 1st

places on the tasks of ImageNet detection, ImageNet local-

ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,

49, 39]. Deep networks naturally integrate low/mid/high-

level features [49] and classifiers in an end-to-end multi-

layer fashion, and the “levels” of features can be enriched

by the number of stacked layers (depth). Recent evidence

[40, 43] reveals that network depth is of crucial importance,

and the leading results [40, 43, 12, 16] on the challenging

ImageNet dataset [35] all exploit “very deep” [40] models,

with a depth of sixteen [40] to thirty [16]. Many other non-

trivial visual recognition tasks [7, 11, 6, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

tr
ai

n
in

g
 e

rr
o

r
(%

)

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

te
st

 e
rr

o
r

(%
)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10

with 20-layer and 56-layer “plain” networks. The deeper network

has higher training error, and thus test error. Similar phenomena

on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?

An obstacle to answering this question was the notorious

problem of vanishing/exploding gradients [14, 1, 8], which

hamper convergence from the beginning. This problem,

however, has been largely addressed by normalized initial-

ization [23, 8, 36, 12] and intermediate normalization layers

[16], which enable networks with tens of layers to start con-

verging for stochastic gradient descent (SGD) with back-

propagation [22].

When deeper networks are able to start converging, a

degradation problem has been exposed: with the network

depth increasing, accuracy gets saturated (which might be

unsurprising) and then degrades rapidly. Unexpectedly,

such degradation is not caused by overfitting, and adding

more layers to a suitably deep model leads to higher train-

ing error, as reported in [10, 41] and thoroughly verified by

our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not

all systems are similarly easy to optimize. Let us consider a

shallower architecture and its deeper counterpart that adds

more layers onto it. There exists a solution by construction

to the deeper model: the added layers are identity mapping,

and the other layers are copied from the learned shallower

model. The existence of this constructed solution indicates

that a deeper model should produce no higher training error

than its shallower counterpart. But experiments show that

our current solvers on hand are unable to find solutions that

1770

identity

weight layer

weight layer

relu

relu
F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution

(or unable to do so in feasible time).

In this paper, we address the degradation problem by

introducing a deep residual learning framework. In-

stead of hoping each few stacked layers directly fit a

desired underlying mapping, we explicitly let these lay-

ers fit a residual mapping. Formally, denoting the desired

underlying mapping as H(x), we let the stacked nonlinear

layers fit another mapping of F(x) := H(x)−x. The orig-

inal mapping is recast into F(x)+x. We hypothesize that it

is easier to optimize the residual mapping than to optimize

the original, unreferenced mapping. To the extreme, if an

identity mapping were optimal, it would be easier to push

the residual to zero than to fit an identity mapping by a stack

of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-

ward neural networks with “shortcut connections” (Fig. 2).

Shortcut connections [2, 33, 48] are those skipping one or

more layers. In our case, the shortcut connections simply

perform identity mapping, and their outputs are added to

the outputs of the stacked layers (Fig. 2). Identity short-

cut connections add neither extra parameter nor computa-

tional complexity. The entire network can still be trained

end-to-end by SGD with backpropagation, and can be eas-

ily implemented using common libraries (e.g., Caffe [19])

without modifying the solvers.

We present comprehensive experiments on ImageNet

[35] to show the degradation problem and evaluate our

method. We show that: 1) Our extremely deep residual nets

are easy to optimize, but the counterpart “plain” nets (that

simply stack layers) exhibit higher training error when the

depth increases; 2) Our deep residual nets can easily enjoy

accuracy gains from greatly increased depth, producing re-

sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set

[20], suggesting that the optimization difficulties and the

effects of our method are not just akin to a particular dataset.

We present successfully trained models on this dataset with

over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [35], we obtain

excellent results by extremely deep residual nets. Our 152-

layer residual net is the deepest network ever presented on

ImageNet, while still having lower complexity than VGG

nets [40]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC

2015 classification competition. The extremely deep rep-

resentations also have excellent generalization performance

on other recognition tasks, and lead us to further win the

1st places on: ImageNet detection, ImageNet localization,

COCO detection, and COCO segmentation in ILSVRC &

COCO 2015 competitions. This strong evidence shows that

the residual learning principle is generic, and we expect that

it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD

[18] is a representation that encodes by the residual vectors

with respect to a dictionary, and Fisher Vector [30] can be

formulated as a probabilistic version [18] of VLAD. Both

of them are powerful shallow representations for image re-

trieval and classification [4, 47]. For vector quantization,

encoding residual vectors [17] is shown to be more effec-

tive than encoding original vectors.

In low-level vision and computer graphics, for solv-

ing Partial Differential Equations (PDEs), the widely used

Multigrid method [3] reformulates the system as subprob-

lems at multiple scales, where each subproblem is respon-

sible for the residual solution between a coarser and a finer

scale. An alternative to Multigrid is hierarchical basis pre-

conditioning [44, 45], which relies on variables that repre-

sent residual vectors between two scales. It has been shown

[3, 44, 45] that these solvers converge much faster than stan-

dard solvers that are unaware of the residual nature of the

solutions. These methods suggest that a good reformulation

or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to

shortcut connections [2, 33, 48] have been studied for a long

time. An early practice of training multi-layer perceptrons

(MLPs) is to add a linear layer connected from the network

input to the output [33, 48]. In [43, 24], a few interme-

diate layers are directly connected to auxiliary classifiers

for addressing vanishing/exploding gradients. The papers

of [38, 37, 31, 46] propose methods for centering layer re-

sponses, gradients, and propagated errors, implemented by

shortcut connections. In [43], an “inception” layer is com-

posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [41, 42]

present shortcut connections with gating functions [15].

These gates are data-dependent and have parameters, in

contrast to our identity shortcuts that are parameter-free.

When a gated shortcut is “closed” (approaching zero), the

layers in highway networks represent non-residual func-

tions. On the contrary, our formulation always learns

residual functions; our identity shortcuts are never closed,

and all information is always passed through, with addi-

tional residual functions to be learned. In addition, high-

2771

way networks have not demonstrated accuracy gains with

extremely increased depth (e.g., over 100 layers).

3. Deep Residual Learning

3.1. Residual Learning

Let us consider H(x) as an underlying mapping to be

fit by a few stacked layers (not necessarily the entire net),

with x denoting the inputs to the first of these layers. If one

hypothesizes that multiple nonlinear layers can asymptoti-

cally approximate complicated functions2, then it is equiv-

alent to hypothesize that they can asymptotically approxi-

mate the residual functions, i.e., H(x) − x (assuming that

the input and output are of the same dimensions). So

rather than expect stacked layers to approximate H(x), we

explicitly let these layers approximate a residual function

F(x) := H(x) − x. The original function thus becomes

F(x)+x. Although both forms should be able to asymptot-

ically approximate the desired functions (as hypothesized),

the ease of learning might be different.

This reformulation is motivated by the counterintuitive

phenomena about the degradation problem (Fig. 1, left). As

we discussed in the introduction, if the added layers can

be constructed as identity mappings, a deeper model should

have training error no greater than its shallower counter-

part. The degradation problem suggests that the solvers

might have difficulties in approximating identity mappings

by multiple nonlinear layers. With the residual learning re-

formulation, if identity mappings are optimal, the solvers

may simply drive the weights of the multiple nonlinear lay-

ers toward zero to approach identity mappings.

In real cases, it is unlikely that identity mappings are op-

timal, but our reformulation may help to precondition the

problem. If the optimal function is closer to an identity

mapping than to a zero mapping, it should be easier for the

solver to find the perturbations with reference to an identity

mapping, than to learn the function as a new one. We show

by experiments (Fig. 7) that the learned residual functions in

general have small responses, suggesting that identity map-

pings provide reasonable preconditioning.

3.2. Identity Mapping by Shortcuts

We adopt residual learning to every few stacked layers.

A building block is shown in Fig. 2. Formally, in this paper

we consider a building block defined as:

y = F(x, {Wi}) + x. (1)

Here x and y are the input and output vectors of the lay-

ers considered. The function F(x, {Wi}) represents the

residual mapping to be learned. For the example in Fig. 2

that has two layers, F = W2σ(W1x) in which σ denotes

2This hypothesis, however, is still an open question. See [28].

ReLU [29] and the biases are omitted for simplifying no-

tations. The operation F + x is performed by a shortcut

connection and element-wise addition. We adopt the sec-

ond nonlinearity after the addition (i.e., σ(y), see Fig. 2).

The shortcut connections in Eqn.(1) introduce neither ex-

tra parameter nor computation complexity. This is not only

attractive in practice but also important in our comparisons

between plain and residual networks. We can fairly com-

pare plain/residual networks that simultaneously have the

same number of parameters, depth, width, and computa-

tional cost (except for the negligible element-wise addition).

The dimensions of x and F must be equal in Eqn.(1).

If this is not the case (e.g., when changing the input/output

channels), we can perform a linear projection Ws by the

shortcut connections to match the dimensions:

y = F(x, {Wi}) +Wsx. (2)

We can also use a square matrix Ws in Eqn.(1). But we will

show by experiments that the identity mapping is sufficient

for addressing the degradation problem and is economical,

and thus Ws is only used when matching dimensions.

The form of the residual function F is flexible. Exper-

iments in this paper involve a function F that has two or

three layers (Fig. 5), while more layers are possible. But if

F has only a single layer, Eqn.(1) is similar to a linear layer:

y = W1x+x, for which we have not observed advantages.

We also note that although the above notations are about

fully-connected layers for simplicity, they are applicable to

convolutional layers. The function F(x, {Wi}) can repre-

sent multiple convolutional layers. The element-wise addi-

tion is performed on two feature maps, channel by channel.

3.3. Network Architectures

We have tested various plain/residual nets, and have ob-

served consistent phenomena. To provide instances for dis-

cussion, we describe two models for ImageNet as follows.

Plain Network. Our plain baselines (Fig. 3, middle) are

mainly inspired by the philosophy of VGG nets [40] (Fig. 3,

left). The convolutional layers mostly have 3×3 filters and

follow two simple design rules: (i) for the same output

feature map size, the layers have the same number of fil-

ters; and (ii) if the feature map size is halved, the num-

ber of filters is doubled so as to preserve the time com-

plexity per layer. We perform downsampling directly by

convolutional layers that have a stride of 2. The network

ends with a global average pooling layer and a 1000-way

fully-connected layer with softmax. The total number of

weighted layers is 34 in Fig. 3 (middle).

It is worth noticing that our model has fewer filters and

lower complexity than VGG nets [40] (Fig. 3, left). Our 34-

layer baseline has 3.6 billion FLOPs (multiply-adds), which

is only 18% of VGG-19 (19.6 billion FLOPs).

3772

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the

VGG-19 model [40] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).

Right: a residual network with 34 parameter layers (3.6 billion

FLOPs). The dotted shortcuts increase dimensions. Table 1 shows

more details and other variants.

Residual Network. Based on the above plain network, we

insert shortcut connections (Fig. 3, right) which turn the

network into its counterpart residual version. The identity

shortcuts (Eqn.(1)) can be directly used when the input and

output are of the same dimensions (solid line shortcuts in

Fig. 3). When the dimensions increase (dotted line shortcuts

in Fig. 3), we consider two options: (A) The shortcut still

performs identity mapping, with extra zero entries padded

for increasing dimensions. This option introduces no extra

parameter; (B) The projection shortcut in Eqn.(2) is used to

match dimensions (done by 1×1 convolutions). For both

options, when the shortcuts go across feature maps of two

sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice

in [21, 40]. The image is resized with its shorter side ran-

domly sampled in [256, 480] for scale augmentation [40].

A 224×224 crop is randomly sampled from an image or its

horizontal flip, with the per-pixel mean subtracted [21]. The

standard color augmentation in [21] is used. We adopt batch

normalization (BN) [16] right after each convolution and

before activation, following [16]. We initialize the weights

as in [12] and train all plain/residual nets from scratch. We

use SGD with a mini-batch size of 256. The learning rate

starts from 0.1 and is divided by 10 when the error plateaus,

and the models are trained for up to 60× 104 iterations. We

use a weight decay of 0.0001 and a momentum of 0.9. We

do not use dropout [13], following the practice in [16].

In testing, for comparison studies we adopt the standard

10-crop testing [21]. For best results, we adopt the fully-

convolutional form as in [40, 12], and average the scores

at multiple scales (images are resized such that the shorter

side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-

cation dataset [35] that consists of 1000 classes. The models

are trained on the 1.28 million training images, and evalu-

ated on the 50k validation images. We also obtain a final

result on the 100k test images, reported by the test server.

We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer

plain nets. The 34-layer plain net is in Fig. 3 (middle). The

18-layer plain net is of a similar form. See Table 1 for de-

tailed architectures.

The results in Table 2 show that the deeper 34-layer plain

net has higher validation error than the shallower 18-layer

plain net. To reveal the reasons, in Fig. 4 (left) we com-

pare their training/validation errors during the training pro-

cedure. We have observed the degradation problem - the

4773

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2

[

3×3, 64

3×3, 64

]

×2

[

3×3, 64

3×3, 64

]

×3

⎡

⎣

1×1, 64

3×3, 64

1×1, 256

⎤

×3

⎡

⎣

1×1, 64

3×3, 64

1×1, 256

⎤

×3

⎡

⎣

1×1, 64

3×3, 64

1×1, 256

⎤

×3

conv3 x 28×28

[

3×3, 128

3×3, 128

]

×2

[

3×3, 128

3×3, 128

]

×4

⎡

⎣

1×1, 128

3×3, 128

1×1, 512

⎤

×4

⎡

⎣

1×1, 128

3×3, 128

1×1, 512

⎤

×4

⎡

⎣

1×1, 128

3×3, 128

1×1, 512

⎤

×8

conv4 x 14×14

[

3×3, 256

3×3, 256

]

×2

[

3×3, 256

3×3, 256

]

×6

⎡

⎣

1×1, 256

3×3, 256

1×1, 1024

⎤

×6

⎡

⎣

1×1, 256

3×3, 256

1×1, 1024

⎤

×23

⎡

⎣

1×1, 256

3×3, 256

1×1, 1024

⎤

×36

conv5 x 7×7

[

3×3, 512

3×3, 512

]

×2

[

3×3, 512

3×3, 512

]

×3

⎡

⎣

1×1, 512

3×3, 512

1×1, 2048

⎤

×3

⎡

⎣

1×1, 512

3×3, 512

1×1, 2048

⎤

×3

⎡

⎣

1×1, 512

3×3, 512

1×1, 2048

⎤

×3

1×1 average pool, 1000-d fc, softmax

FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-

sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18

plain-34

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

ResNet-18

ResNet-34

18-layer

34-layer
18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.

plain ResNet

18 layers 27.94 27.88

34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.

Here the ResNets have no extra parameter compared to their plain

counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the

whole training procedure, even though the solution space

of the 18-layer plain network is a subspace of that of the

34-layer one.

We argue that this optimization difficulty is unlikely to

be caused by vanishing gradients. These plain networks are

trained with BN [16], which ensures forward propagated

signals to have non-zero variances. We also verify that the

backward propagated gradients exhibit healthy norms with

BN. So neither forward nor backward signals vanish. In

fact, the 34-layer plain net is still able to achieve compet-

itive accuracy (Table 3), suggesting that the solver works

to some extent. We conjecture that the deep plain nets may

have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-

mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-

layer residual nets (ResNets). The baseline architectures

are the same as the above plain nets, expect that a shortcut

connection is added to each pair of 3×3 filters as in Fig. 3

(right). In the first comparison (Table 2 and Fig. 4 right),

we use identity mapping for all shortcuts and zero-padding

for increasing dimensions (option A). So they have no extra

parameter compared to the plain counterparts.

We have three major observations from Table 2 and

Fig. 4. First, the situation is reversed with residual learn-

ing – the 34-layer ResNet is better than the 18-layer ResNet

(by 2.8%). More importantly, the 34-layer ResNet exhibits

considerably lower training error and is generalizable to the

validation data. This indicates that the degradation problem

is well addressed in this setting and we manage to obtain

accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-

served the degradation problem, suggesting that this problem cannot be

feasibly addressed by simply using more iterations.

5774

model top-1 err. top-5 err.

VGG-16 [40] 28.07 9.33

GoogLeNet [43] - 9.15

PReLU-net [12] 24.27 7.38

plain-34 28.54 10.02

ResNet-34 A 25.03 7.76

ResNet-34 B 24.52 7.46

ResNet-34 C 24.19 7.40

ResNet-50 22.85 6.71

ResNet-101 21.75 6.05

ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.

VGG-16 is based on our test. ResNet-50/101/152 are of option B

that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [40] (ILSVRC’14) - 8.43†

GoogLeNet [43] (ILSVRC’14) - 7.89

VGG [40] (v5) 24.4 7.1

PReLU-net [12] 21.59 5.71

BN-inception [16] 21.99 5.81

ResNet-34 B 21.84 5.71

ResNet-34 C 21.53 5.60

ResNet-50 20.74 5.25

ResNet-101 19.87 4.60

ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet

validation set (except † reported on the test set).

method top-5 err. (test)

VGG [40] (ILSVRC’14) 7.32

GoogLeNet [43] (ILSVRC’14) 6.66

VGG [40] (v5) 6.8

PReLU-net [12] 4.94

BN-inception [16] 4.82

ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the

test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting

from the successfully reduced training error (Fig. 4 right vs.

left). This comparison verifies the effectiveness of residual

learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets

are comparably accurate (Table 2), but the 18-layer ResNet

converges faster (Fig. 4 right vs. left). When the net is “not

overly deep” (18 layers here), the current SGD solver is still

able to find good solutions to the plain net. In this case, the

ResNet eases the optimization by providing faster conver-

gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a

building block (on 56×56 feature maps) as in Fig. 3 for ResNet-

34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next

we investigate projection shortcuts (Eqn.(2)). In Table 3 we

compare three options: (A) zero-padding shortcuts are used

for increasing dimensions, and all shortcuts are parameter-

free (the same as Table 2 and Fig. 4 right); (B) projec-

tion shortcuts are used for increasing dimensions, and other

shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-

ter than the plain counterpart. B is slightly better than A. We

argue that this is because the zero-padded dimensions in A

indeed have no residual learning. C is marginally better than

B, and we attribute this to the extra parameters introduced

by many (thirteen) projection shortcuts. But the small dif-

ferences among A/B/C indicate that projection shortcuts are

not essential for addressing the degradation problem. So we

do not use option C in the rest of this paper, to reduce mem-

ory/time complexity and model sizes. Identity shortcuts are

particularly important for not increasing the complexity of

the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our

deeper nets for ImageNet. Because of concerns on the train-

ing time that we can afford, we modify the building block

as a bottleneck design4. For each residual function F , we

use a stack of 3 layers instead of 2 (Fig. 5). The three layers

are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers

are responsible for reducing and then increasing (restoring)

dimensions, leaving the 3×3 layer a bottleneck with smaller

input/output dimensions. Fig. 5 shows an example, where

both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-

portant for the bottleneck architectures. If the identity short-

cut in Fig. 5 (right) is replaced with projection, one can

show that the time complexity and model size are doubled,

as the shortcut is connected to the two high-dimensional

ends. So identity shortcuts lead to more efficient models

for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy

from increased depth (as shown on CIFAR-10), but are not as economical

as the bottleneck ResNets. So the usage of bottleneck designs is mainly due

to practical considerations. We further note that the degradation problem

of plain nets is also witnessed for the bottleneck designs.

6775

34-layer net with this 3-layer bottleneck block, resulting in

a 50-layer ResNet (Table 1). We use option B for increasing

dimensions. This model has 3.8 billion FLOPs.

101-layer and 152-layer ResNets: We construct 101-

layer and 152-layer ResNets by using more 3-layer blocks

(Table 1). Remarkably, although the depth is significantly

increased, the 152-layer ResNet (11.3 billion FLOPs) still

has lower complexity than VGG-16/19 nets (15.3/19.6 bil-

lion FLOPs).

The 50/101/152-layer ResNets are more accurate than

the 34-layer ones by considerable margins (Table 3 and 4).

We do not observe the degradation problem and thus en-

joy significant accuracy gains from considerably increased

depth. The benefits of depth are witnessed for all evaluation

metrics (Table 3 and 4).

Comparisons with State-of-the-art Methods. In Table 4

we compare with the previous best single-model results.

Our baseline 34-layer ResNets have achieved very compet-

itive accuracy. Our 152-layer ResNet has a single-model

top-5 validation error of 4.49%. This single-model result

outperforms all previous ensemble results (Table 5). We

combine six models of different depth to form an ensemble

(only with two 152-layer ones at the time of submitting).

This leads to 3.57% top-5 error on the test set (Table 5).

This entry won the 1st place in ILSVRC 2015.

4.2. CIFAR-10 and Analysis

We conducted more studies on the CIFAR-10 dataset

[20], which consists of 50k training images and 10k test-

ing images in 10 classes. We present experiments trained

on the training set and evaluated on the test set. Our focus

is on the behaviors of extremely deep networks, but not on

pushing the state-of-the-art results, so we intentionally use

simple architectures as follows.

The plain/residual architectures follow the form in Fig. 3

(middle/right). The network inputs are 32×32 images, with

the per-pixel mean subtracted. The first layer is 3×3 convo-

lutions. Then we use a stack of 6n layers with 3×3 convo-

lutions on the feature maps of sizes {32, 16, 8} respectively,

with 2n layers for each feature map size. The numbers of

filters are {16, 32, 64} respectively. The subsampling is per-

formed by convolutions with a stride of 2. The network ends

with a global average pooling, a 10-way fully-connected

layer, and softmax. There are totally 6n+2 stacked weighted

layers. The following table summarizes the architecture:

output map size 32×32 16×16 8×8

layers 1+2n 2n 2n

filters 16 32 64

When shortcut connections are used, they are connected

to the pairs of 3×3 layers (totally 3n shortcuts). On this

dataset we use identity shortcuts in all cases (i.e., option A),

method error (%)

Maxout [9] 9.38

NIN [25] 8.81

DSN [24] 8.22

layers # params

FitNet [34] 19 2.5M 8.39

Highway [41, 42] 19 2.3M 7.54 (7.72±0.16)

Highway [41, 42] 32 1.25M 8.80

ResNet 20 0.27M 8.75

ResNet 32 0.46M 7.51

ResNet 44 0.66M 7.17

ResNet 56 0.85M 6.97

ResNet 110 1.7M 6.43 (6.61±0.16)

ResNet 1202 19.4M 7.93

Table 6. Classification error on the CIFAR-10 test set. All meth-

ods are with data augmentation. For ResNet-110, we run it 5 times

and show “best (mean±std)” as in [42].

so our residual models have exactly the same depth, width,

and number of parameters as the plain counterparts.

We use a weight decay of 0.0001 and momentum of 0.9,

and adopt the weight initialization in [12] and BN [16] but

with no dropout. These models are trained with a mini-

batch size of 128 on two GPUs. We start with a learning

rate of 0.1, divide it by 10 at 32k and 48k iterations, and

terminate training at 64k iterations, which is determined on

a 45k/5k train/val split. We follow the simple data augmen-

tation in [24] for training: 4 pixels are padded on each side,

and a 32×32 crop is randomly sampled from the padded

image or its horizontal flip. For testing, we only evaluate

the single view of the original 32×32 image.

We compare n = {3, 5, 7, 9}, leading to 20, 32, 44, and

56-layer networks. Fig. 6 (left) shows the behaviors of the

plain nets. The deep plain nets suffer from increased depth,

and exhibit higher training error when going deeper. This

phenomenon is similar to that on ImageNet (Fig. 4, left) and

on MNIST (see [41]), suggesting that such an optimization

difficulty is a fundamental problem.

Fig. 6 (middle) shows the behaviors of ResNets. Also

similar to the ImageNet cases (Fig. 4, right), our ResNets

manage to overcome the optimization difficulty and demon-

strate accuracy gains when the depth increases.

We further explore n = 18 that leads to a 110-layer

ResNet. In this case, we find that the initial learning rate

of 0.1 is slightly too large to start converging5. So we use

0.01 to warm up the training until the training error is below

80% (about 400 iterations), and then go back to 0.1 and con-

tinue training. The rest of the learning schedule is as done

previously. This 110-layer network converges well (Fig. 6,

middle). It has fewer parameters than other deep and thin

5With an initial learning rate of 0.1, it starts converging (<90% error)

after several epochs, but still reaches similar accuracy.

7776

0 1 2 3 4 5 6
0

5

10

20

iter. (1e4)

er
ro

r
(%

)

plain-20

plain-32

plain-44

plain-56

0 1 2 3 4 5 6
0

5

10

20

iter. (1e4)

er
ro

r
(%

)

ResNet-20

ResNet-32

ResNet-44

ResNet-56

ResNet-11056-layer

20-layer

110-layer

20-layer

4 5 6
0
1

5

10

20

iter. (1e4)

er
ro

r
(%

)

residual-110

residual-1202

Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error

of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.

0 20 40 60 80 100

1

2

3

layer index (sorted by magnitude)

st
d

plain-20

plain-56

ResNet-20

ResNet-56

ResNet-110

0 20 40 60 80 100

1

2

3

layer index (original)

st
d

plain-20

plain-56

ResNet-20

ResNet-56

ResNet-110

Figure 7. Standard deviations (std) of layer responses on CIFAR-

10. The responses are the outputs of each 3×3 layer, after BN and

before nonlinearity. Top: the layers are shown in their original

order. Bottom: the responses are ranked in descending order.

networks such as FitNet [34] and Highway [41] (Table 6),

yet is among the state-of-the-art results (6.43%, Table 6).

Analysis of Layer Responses. Fig. 7 shows the standard

deviations (std) of the layer responses. The responses are

the outputs of each 3×3 layer, after BN and before other

nonlinearity (ReLU/addition). For ResNets, this analy-

sis reveals the response strength of the residual functions.

Fig. 7 shows that ResNets have generally smaller responses

than their plain counterparts. These results support our ba-

sic motivation (Sec.3.1) that the residual functions might

be generally closer to zero than the non-residual functions.

We also notice that the deeper ResNet has smaller magni-

tudes of responses, as evidenced by the comparisons among

ResNet-20, 56, and 110 in Fig. 7. When there are more

layers, an individual layer of ResNets tends to modify the

signal less.

Exploring Over 1000 layers. We explore an aggressively

deep model of over 1000 layers. We set n = 200 that

leads to a 1202-layer network, which is trained as described

above. Our method shows no optimization difficulty, and

this 103-layer network is able to achieve training error

<0.1% (Fig. 6, right). Its test error is still fairly good

(7.93%, Table 6).

But there are still open problems on such aggressively

deep models. The testing result of this 1202-layer network

is worse than that of our 110-layer network, although both

training data 07+12 07++12

test data VOC 07 test VOC 12 test

VGG-16 73.2 70.4

ResNet-101 76.4 73.8

Table 7. Object detection mAP (%) on the PASCAL VOC

2007/2012 test sets using baseline Faster R-CNN. See also ap-

pendix for better results.

metric mAP@.5 mAP@[.5, .95]

VGG-16 41.5 21.2

ResNet-101 48.4 27.2

Table 8. Object detection mAP (%) on the COCO validation set

using baseline Faster R-CNN. See also appendix for better results.

have similar training error. We argue that this is because of

overfitting. The 1202-layer network may be unnecessarily

large (19.4M) for this small dataset. Strong regularization

such as maxout [9] or dropout [13] is applied to obtain the

best results ([9, 25, 24, 34]) on this dataset. In this paper, we

use no maxout/dropout and just simply impose regulariza-

tion via deep and thin architectures by design, without dis-

tracting from the focus on the difficulties of optimization.

But combining with stronger regularization may improve

results, which we will study in the future.

4.3. Object Detection on PASCAL and MS COCO

Our method has good generalization performance on

other recognition tasks. Table 7 and 8 show the object de-

tection baseline results on PASCAL VOC 2007 and 2012

[5] and COCO [26]. We adopt Faster R-CNN [32] as the de-

tection method. Here we are interested in the improvements

of replacing VGG-16 [40] with ResNet-101. The detection

implementation (see appendix) of using both models is the

same, so the gains can only be attributed to better networks.

Most remarkably, on the challenging COCO dataset we ob-

tain a 6.0% increase in COCO’s standard metric (mAP@[.5,

.95]), which is a 28% relative improvement. This gain is

solely due to the learned representations.

Based on deep residual nets, we won the 1st places in

several tracks in ILSVRC & COCO 2015 competitions: Im-

ageNet detection, ImageNet localization, COCO detection,

and COCO segmentation. The details are in the appendix.

8777

References

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-

cies with gradient descent is difficult. IEEE Transactions on Neural

Networks, 5(2):157–166, 1994.

[2] C. M. Bishop. Neural networks for pattern recognition. Oxford

university press, 1995.

[3] W. L. Briggs, S. F. McCormick, et al. A Multigrid Tutorial. Siam,

2000.

[4] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil

is in the details: an evaluation of recent feature encoding methods.

In BMVC, 2011.

[5] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-

serman. The Pascal Visual Object Classes (VOC) Challenge. IJCV,

pages 303–338, 2010.

[6] R. Girshick. Fast R-CNN. In ICCV, 2015.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hier-

archies for accurate object detection and semantic segmentation. In

CVPR, 2014.

[8] X. Glorot and Y. Bengio. Understanding the difficulty of training

deep feedforward neural networks. In AISTATS, 2010.

[9] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and

Y. Bengio. Maxout networks. arXiv:1302.4389, 2013.

[10] K. He and J. Sun. Convolutional neural networks at constrained time

cost. In CVPR, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep

convolutional networks for visual recognition. In ECCV, 2014.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In

ICCV, 2015.

[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by preventing co-

adaptation of feature detectors. arXiv:1207.0580, 2012.

[14] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen.

Diploma thesis, TU Munich, 1991.

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML, 2015.

[17] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. TPAMI, 33, 2011.

[18] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and

C. Schmid. Aggregating local image descriptors into compact codes.

TPAMI, 2012.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for

fast feature embedding. arXiv:1408.5093, 2014.

[20] A. Krizhevsky. Learning multiple layers of features from tiny im-

ages. Tech Report, 2009.

[21] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification

with deep convolutional neural networks. In NIPS, 2012.

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel. Backpropagation applied to hand-

written zip code recognition. Neural computation, 1989.

[23] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop.

In Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

[24] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. arXiv:1409.5185, 2014.

[25] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400,

2013.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in

context. In ECCV. 2014.

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks

for semantic segmentation. In CVPR, 2015.

[28] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of

linear regions of deep neural networks. In NIPS, 2014.

[29] V. Nair and G. E. Hinton. Rectified linear units improve restricted

boltzmann machines. In ICML, 2010.

[30] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for

image categorization. In CVPR, 2007.

[31] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made easier by

linear transformations in perceptrons. In AISTATS, 2012.

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks. In NIPS,

2015.

[33] B. D. Ripley. Pattern recognition and neural networks. Cambridge

university press, 1996.

[34] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and

Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet

large scale visual recognition challenge. arXiv:1409.0575, 2014.

[36] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to

the nonlinear dynamics of learning in deep linear neural networks.

arXiv:1312.6120, 2013.

[37] N. N. Schraudolph. Accelerated gradient descent by factor-centering

decomposition. Technical report, 1998.

[38] N. N. Schraudolph. Centering neural network gradient factors. In

Neural Networks: Tricks of the Trade, pages 207–226. Springer,

1998.

[39] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-

Cun. Overfeat: Integrated recognition, localization and detection

using convolutional networks. In ICLR, 2014.

[40] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. In ICLR, 2015.

[41] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks.

arXiv:1505.00387, 2015.

[42] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep

networks. 1507.06228, 2015.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolu-

tions. In CVPR, 2015.

[44] R. Szeliski. Fast surface interpolation using hierarchical basis func-

tions. TPAMI, 1990.

[45] R. Szeliski. Locally adapted hierarchical basis preconditioning. In

SIGGRAPH, 2006.

[46] T. Vatanen, T. Raiko, H. Valpola, and Y. LeCun. Pushing stochas-

tic gradient towards second-order methods–backpropagation learn-

ing with transformations in nonlinearities. In Neural Information

Processing, 2013.

[47] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library

of computer vision algorithms, 2008.

[48] W. Venables and B. Ripley. Modern applied statistics with s-plus.

1999.

[49] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-

tional neural networks. In ECCV, 2014.

9778

