""" Copyright (c) 2022-present NAVER Corp. Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. MIT License This file has been modified by [ByteDance Ltd. and/or its affiliates] on 20250118. The original file available at https://github.com/clovaai/donut/blob/master/donut/model.py was released under the MIT license. This modified file is released under the same license. """ import logging from collections import defaultdict from typing import List, Optional import torch import torch.nn.functional as F from PIL import Image from timm.models.swin_transformer import SwinTransformer from torch import nn from transformers import ( MBartConfig, MBartForCausalLM, StoppingCriteria, StoppingCriteriaList, ) from transformers.file_utils import ModelOutput from transformers.modeling_utils import PretrainedConfig, PreTrainedModel class SwinEncoder(nn.Module): r""" Encoder based on SwinTransformer Set the initial weights and configuration with a pretrained SwinTransformer and then modify the detailed configurations Args: input_size: Input image size (width, height) align_long_axis: Whether to rotate image if height is greater than width window_size: Window size(=patch size) of SwinTransformer encoder_layer: Number of layers of SwinTransformer encoder name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local. otherwise, `swin_base_patch4_window12_384` will be set (using `timm`). """ def __init__( self, input_size, align_long_axis: bool = False, window_size: int = 7, encoder_layer: List[int] = [2, 2, 14, 2], patch_size: int = [4, 4], embed_dim: int = 128, num_heads: List[int] = [4, 8, 16, 32], ): super().__init__() if isinstance(input_size, int): input_size = [input_size, input_size] self.input_size = input_size self.align_long_axis = align_long_axis self.window_size = window_size self.encoder_layer = encoder_layer self.patch_size = patch_size self.embed_dim = embed_dim self.num_heads = num_heads self.model = SwinTransformer( img_size=self.input_size, depths=self.encoder_layer, window_size=self.window_size, patch_size=self.patch_size, embed_dim=self.embed_dim, num_heads=self.num_heads, num_classes=0, ) def forward(self, x: torch.Tensor, text_embedding: Optional[torch.Tensor] = None) -> torch.Tensor: """ Args: x: (batch_size, num_channels, height, width) """ x = self.model.patch_embed(x) x = self.model.pos_drop(x) x = self.model.layers(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def _set_dtype(self, dtype): self._dtype = dtype def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(dtype=self._dtype)) return ret.type(orig_type) class BARTDecoder(nn.Module): """ Decoder based on Multilingual BART Set the initial weights and configuration with a pretrained multilingual BART model, and modify the detailed configurations as a Donut decoder Args: decoder_layer: Number of layers of BARTDecoder max_position_embeddings: The maximum sequence length to be trained name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local, otherwise, `facebook/mbart-large-50` will be set (using `transformers`) """ def __init__( self, tokenizer, decoder_layer: int, max_position_embeddings: int, hidden_dimension: int = 1024, **kwargs, ): super().__init__() self.decoder_layer = decoder_layer self.max_position_embeddings = max_position_embeddings self.hidden_dimension = hidden_dimension self.tokenizer = tokenizer self.model = MBartForCausalLM( config=MBartConfig( tie_word_embeddings=True, is_decoder=True, is_encoder_decoder=False, add_cross_attention=True, decoder_layers=self.decoder_layer, max_position_embeddings=self.max_position_embeddings, vocab_size=len(self.tokenizer), scale_embedding=True, add_final_layer_norm=True, d_model=self.hidden_dimension, ) ) # self.model.config.is_encoder_decoder = True # to get cross-attention self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference def add_special_tokens(self, list_of_tokens: List[str]): """ Add special tokens to tokenizer and resize the token embeddings """ newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))}) if newly_added_num > 0: self.model.resize_token_embeddings(len(self.tokenizer)) def add_tokens(self, list_of_tokens: List[str]): """ Add special tokens to tokenizer and resize the token embeddings """ newly_added_num = self.tokenizer.add_tokens(sorted(set(list_of_tokens))) if newly_added_num > 0: self.model.resize_token_embeddings(len(self.tokenizer)) def prepare_inputs_for_inference( self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past=None, past_key_values=None, use_cache: bool = None, attention_mask: torch.Tensor = None, **kwargs, ): """ Args: input_ids: (batch_size, sequence_length) Returns: input_ids: (batch_size, sequence_length) attention_mask: (batch_size, sequence_length) encoder_hidden_states: (batch_size, sequence_length, embedding_dim) """ attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long() past = past or past_key_values if past is not None: input_ids = input_ids[:, -1:] output = { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past, "use_cache": use_cache, "encoder_hidden_states": encoder_outputs.last_hidden_state, } return output def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_values: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.Tensor] = None, use_cache: bool = None, output_attentions: Optional[torch.Tensor] = None, output_hidden_states: Optional[torch.Tensor] = None, return_dict: bool = None, ): return self.model.forward( input_ids=input_ids, attention_mask=attention_mask, labels=labels, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @staticmethod def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor: """ Resize position embeddings Truncate if sequence length of MBart backbone is greater than given max_length, else interpolate to max_length """ if weight.shape[0] > max_length: weight = weight[:max_length, ...] else: weight = ( F.interpolate( weight.permute(1, 0).unsqueeze(0), size=max_length, mode="linear", align_corners=False, ) .squeeze(0) .permute(1, 0) ) return weight class DonutConfig(PretrainedConfig): def __init__( self, decoder_layer: int = 10, max_position_embeddings: int = None, max_length: int = 4096, hidden_dimension: int = 1024, **kwargs, ): super().__init__() self.decoder_layer = decoder_layer self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings self.max_length = max_length self.hidden_dimension = hidden_dimension class RunningVarTorch: def __init__(self, L=15, norm=False): self.values = None self.L = L self.norm = norm def push(self, x: torch.Tensor): assert x.dim() == 1 if self.values is None: self.values = x[:, None] elif self.values.shape[1] < self.L: self.values = torch.cat((self.values, x[:, None]), 1) else: self.values = torch.cat((self.values[:, 1:], x[:, None]), 1) def variance(self): if self.values is None: return if self.norm: return torch.var(self.values, 1) / self.values.shape[1] else: return torch.var(self.values, 1) class StoppingCriteriaScores(StoppingCriteria): def __init__(self, threshold: float = 0.015, window_size: int = 200): super().__init__() self.threshold = threshold self.vars = RunningVarTorch(norm=True) self.varvars = RunningVarTorch(L=window_size) self.stop_inds = defaultdict(int) self.stopped = defaultdict(bool) self.size = 0 self.window_size = window_size @torch.no_grad() def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): last_scores = scores[-1] self.vars.push(last_scores.max(1)[0].float().cpu()) self.varvars.push(self.vars.variance()) self.size += 1 if self.size < self.window_size: return False varvar = self.varvars.variance() for b in range(len(last_scores)): if varvar[b] < self.threshold: if self.stop_inds[b] > 0 and not self.stopped[b]: self.stopped[b] = self.stop_inds[b] >= self.size else: self.stop_inds[b] = int(min(max(self.size, 1) * 1.15 + 150 + self.window_size, 4095)) else: self.stop_inds[b] = 0 self.stopped[b] = False return all(self.stopped.values()) and len(self.stopped) > 0 def batch(l, b=15): subs = [] for i in range(len(l) - b): subs.append(l[i : i + b]) return subs def subdiv(l, b=10): subs = [] for i in range(len(l) - b): subs.append(l[: i + b]) return subs class DonutModel(PreTrainedModel): config_class = DonutConfig base_model_prefix = "donut" def __init__(self, config: DonutConfig, vision_tower=None, tokenizer=None): super().__init__(config) self.config = config self.tokenizer = tokenizer self.vpm = vision_tower # build language model self.llm = BARTDecoder( tokenizer=tokenizer, decoder_layer=self.config.decoder_layer, max_position_embeddings=self.config.max_position_embeddings, hidden_dimension=self.config.hidden_dimension, ) self.ids_to_tokens = {id: content for content, id in self.llm.tokenizer.vocab.items()} def get_input_embeddings(self, tensor): return self.llm.model.get_input_embeddings()(tensor) def forward( self, inputs: dict, ): image_tensors = inputs["pixel_values"] input_ids = inputs["input_ids"].contiguous() attention_mask = inputs["attention_mask"] labels = inputs["labels"].contiguous() encoder_outputs = self.vpm( image_tensors, text_embedding=self.llm.model.get_input_embeddings()(input_ids), ) decoder_outputs = self.llm( input_ids=input_ids, encoder_hidden_states=encoder_outputs, attention_mask=attention_mask, labels=labels, ) return decoder_outputs def get_hidden_states_during_inference( self, prompt_ids: torch.Tensor, image: Image.Image = None, image_tensors: Optional[torch.Tensor] = None, ): if image_tensors is None: image_tensors = self.vpm.prepare_input(image).unsqueeze(0) if self.device.type != "mps": image_tensors = image_tensors.to(next(self.parameters()).dtype) image_tensors = image_tensors.to(self.device) prompt_ids = prompt_ids.to(self.device) all_hidden_states = self.vpm.forward_features( image_tensors, text_embedding=self.get_input_embeddings(prompt_ids) ) return all_hidden_states def get_attn_weights_during_inference( self, prompt_ids: torch.Tensor, image: Image.Image = None, image_tensors: Optional[torch.Tensor] = None, ): if image_tensors is None: image_tensors = self.vpm.prepare_input(image).unsqueeze(0) if self.device.type != "mps": image_tensors = image_tensors.to(next(self.parameters()).dtype) image_tensors = image_tensors.to(self.device) prompt_ids = prompt_ids.to(self.device) last_attn_score = self.vpm.get_last_layer_cross_attn_score( image_tensors, text_embedding=self.get_input_embeddings(prompt_ids) ) return last_attn_score def inference( self, prompt_ids: torch.Tensor, image: Image.Image = None, image_tensors: Optional[torch.Tensor] = None, return_attentions: bool = False, early_stopping: bool = True, ): """ Generate a token sequence in an auto-regressive manner. Args: image: input document image (PIL.Image) image_tensors: (1, num_channels, height, width) convert prompt to tensor if image_tensor is not fed """ output = { "predictions": list(), "sequences": list(), "repeats": list(), "repetitions": list(), } if image is None and image_tensors is None: logging.warn("Image not found") return output if image_tensors is None: image_tensors = self.vpm.prepare_input(image).unsqueeze(0) if self.device.type != "mps": image_tensors = image_tensors.to(next(self.parameters()).dtype) image_tensors = image_tensors.to(self.device) prompt_ids = prompt_ids.to(self.device) last_hidden_state = self.vpm(image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)) encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None) if len(encoder_outputs.last_hidden_state.size()) == 1: encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0) # get decoder output decoder_output = self.llm.model.generate( input_ids=prompt_ids, encoder_outputs=encoder_outputs, min_length=1, max_length=self.config.max_length, pad_token_id=self.llm.tokenizer.pad_token_id, eos_token_id=self.llm.tokenizer.eos_token_id, use_cache=True, return_dict_in_generate=True, output_scores=True, output_attentions=return_attentions, do_sample=False, num_beams=1, stopping_criteria=StoppingCriteriaList([StoppingCriteriaScores()] if early_stopping else []), ) output["repetitions"] = decoder_output.sequences.clone() output["sequences"] = decoder_output.sequences.clone() output["scores"] = torch.stack(decoder_output.scores, 1).softmax(-1).cpu().max(-1)[0] output["repetitions"] = self.llm.tokenizer.batch_decode(output["repetitions"], skip_special_tokens=False) return output