🚀 Dolphin TensorRT-LLM Demo

## ✅ Introduction The Dolphin model employs a **Swin Encoder + MBart Decoder** architecture. In the HuggingFace Transformers [Config](https://huggingface.co/ByteDance/Dolphin/blob/main/config.json), its architectures field is specified as "VisionEncoderDecoderModel". **Dolphin**, **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)**, and **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** share the same model architecture. TensorRT-LLM has already supported the Nougat model. Following Nougat's conversion script, we have successfully implemented Dolphin on TensorRT-LLM. **Note:** [prompt_ids](./dolphin_runner.py#L120) MUST be of **int32** type, otherwise TensorRT-LLM will produce incorrect results. ## 🛠️ Installation > We only test TensorRT-LLM 0.18.1 on Linux. https://nvidia.github.io/TensorRT-LLM/0.18.1/installation/linux.html ## ⚡ Offline Inference ``` export MODEL_NAME="Dolphin" # predict elements reading order python run_dolphin.py \ --batch_size 1 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ --max_new_tokens 4096 \ --repetition_penalty 1.0 \ --input_text "Parse the reading order of this document." \ --image_path "../../demo/page_imgs/page_1.jpeg" # recognize text/latex python run_dolphin.py \ --batch_size 1 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ --max_new_tokens 4096 \ --repetition_penalty 1.0 \ --input_text "Read text in the image." \ --image_path "../../demo/element_imgs/block_formula.jpeg" python run_dolphin.py \ --batch_size 1 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ --max_new_tokens 4096 \ --repetition_penalty 1.0 \ --input_text "Read text in the image." \ --image_path "../../demo/element_imgs/para_1.jpg" # recognize table python run_dolphin.py \ --batch_size 1 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ --max_new_tokens 4096 \ --repetition_penalty 1.0 \ --input_text "Parse the table in the image." \ --image_path "../../demo/element_imgs/table_1.jpeg" ``` ## ⚡ Online Inference ``` # 1. Start Api Server export MODEL_NAME="Dolphin" python api_server.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ --max_batch_size 16 # 2. Predict # predict elements reading order python deployment/tensorrt_llm/api_client.py --image_path ./demo/page_imgs/page_1.jpeg --prompt "Parse the reading order of this document." # recognize text/latex python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/block_formula.jpeg --prompt "Read text in the image." python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/para_1.jpg --prompt "Read text in the image." # recognize table python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/table_1.jpeg --prompt "Parse the table in the image." ```