
* chore: rename org Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * Update docs/faq/index.md Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com> Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com> * update github pages Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * revert test content Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com> Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
119 lines
4.4 KiB
Python
119 lines
4.4 KiB
Python
import logging
|
|
import tempfile
|
|
from typing import Iterable, Optional, Tuple
|
|
|
|
from docling_core.types.doc import BoundingBox, CoordOrigin
|
|
|
|
from docling.datamodel.base_models import OcrCell, Page
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import OcrMacOptions
|
|
from docling.datamodel.settings import settings
|
|
from docling.models.base_ocr_model import BaseOcrModel
|
|
from docling.utils.profiling import TimeRecorder
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class OcrMacModel(BaseOcrModel):
|
|
def __init__(self, enabled: bool, options: OcrMacOptions):
|
|
super().__init__(enabled=enabled, options=options)
|
|
self.options: OcrMacOptions
|
|
|
|
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
|
|
|
if self.enabled:
|
|
install_errmsg = (
|
|
"ocrmac is not correctly installed. "
|
|
"Please install it via `pip install ocrmac` to use this OCR engine. "
|
|
"Alternatively, Docling has support for other OCR engines. See the documentation: "
|
|
"https://docling-project.github.io/docling/installation/"
|
|
)
|
|
try:
|
|
from ocrmac import ocrmac
|
|
except ImportError:
|
|
raise ImportError(install_errmsg)
|
|
|
|
self.reader_RIL = ocrmac.OCR
|
|
|
|
def __call__(
|
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
|
) -> Iterable[Page]:
|
|
|
|
if not self.enabled:
|
|
yield from page_batch
|
|
return
|
|
|
|
for page in page_batch:
|
|
assert page._backend is not None
|
|
if not page._backend.is_valid():
|
|
yield page
|
|
else:
|
|
with TimeRecorder(conv_res, "ocr"):
|
|
|
|
ocr_rects = self.get_ocr_rects(page)
|
|
|
|
all_ocr_cells = []
|
|
for ocr_rect in ocr_rects:
|
|
# Skip zero area boxes
|
|
if ocr_rect.area() == 0:
|
|
continue
|
|
high_res_image = page._backend.get_page_image(
|
|
scale=self.scale, cropbox=ocr_rect
|
|
)
|
|
|
|
with tempfile.NamedTemporaryFile(
|
|
suffix=".png", mode="w"
|
|
) as image_file:
|
|
fname = image_file.name
|
|
high_res_image.save(fname)
|
|
|
|
boxes = self.reader_RIL(
|
|
fname,
|
|
recognition_level=self.options.recognition,
|
|
framework=self.options.framework,
|
|
language_preference=self.options.lang,
|
|
).recognize()
|
|
|
|
im_width, im_height = high_res_image.size
|
|
cells = []
|
|
for ix, (text, confidence, box) in enumerate(boxes):
|
|
x = float(box[0])
|
|
y = float(box[1])
|
|
w = float(box[2])
|
|
h = float(box[3])
|
|
|
|
x1 = x * im_width
|
|
y2 = (1 - y) * im_height
|
|
|
|
x2 = x1 + w * im_width
|
|
y1 = y2 - h * im_height
|
|
|
|
left = x1 / self.scale
|
|
top = y1 / self.scale
|
|
right = x2 / self.scale
|
|
bottom = y2 / self.scale
|
|
|
|
cells.append(
|
|
OcrCell(
|
|
id=ix,
|
|
text=text,
|
|
confidence=confidence,
|
|
bbox=BoundingBox.from_tuple(
|
|
coord=(left, top, right, bottom),
|
|
origin=CoordOrigin.TOPLEFT,
|
|
),
|
|
)
|
|
)
|
|
|
|
# del high_res_image
|
|
all_ocr_cells.extend(cells)
|
|
|
|
# Post-process the cells
|
|
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
|
|
|
|
# DEBUG code:
|
|
if settings.debug.visualize_ocr:
|
|
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
|
|
|
|
yield page
|