
--------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> Signed-off-by: Peter Staar <taa@zurich.ibm.com> Co-authored-by: Nikos Livathinos <nli@zurich.ibm.com> Co-authored-by: Peter Staar <taa@zurich.ibm.com>
254 lines
7.7 KiB
Python
254 lines
7.7 KiB
Python
import importlib
|
|
import json
|
|
import logging
|
|
import time
|
|
import warnings
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Annotated, Iterable, List, Optional
|
|
|
|
import typer
|
|
from docling_core.utils.file import resolve_file_source
|
|
|
|
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
|
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
|
from docling.datamodel.base_models import ConversionStatus
|
|
from docling.datamodel.document import ConversionResult, DocumentConversionInput
|
|
from docling.datamodel.pipeline_options import (
|
|
EasyOcrOptions,
|
|
PipelineOptions,
|
|
TesseractCliOcrOptions,
|
|
TesseractOcrOptions,
|
|
)
|
|
from docling.document_converter import DocumentConverter
|
|
|
|
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
|
|
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
|
|
|
|
_log = logging.getLogger(__name__)
|
|
from rich.console import Console
|
|
|
|
err_console = Console(stderr=True)
|
|
|
|
|
|
app = typer.Typer(
|
|
name="Docling",
|
|
no_args_is_help=True,
|
|
add_completion=False,
|
|
pretty_exceptions_enable=False,
|
|
)
|
|
|
|
|
|
def version_callback(value: bool):
|
|
if value:
|
|
docling_version = importlib.metadata.version("docling")
|
|
docling_core_version = importlib.metadata.version("docling-core")
|
|
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
|
|
docling_parse_version = importlib.metadata.version("docling-parse")
|
|
print(f"Docling version: {docling_version}")
|
|
print(f"Docling Core version: {docling_core_version}")
|
|
print(f"Docling IBM Models version: {docling_ibm_models_version}")
|
|
print(f"Docling Parse version: {docling_parse_version}")
|
|
raise typer.Exit()
|
|
|
|
|
|
# Define an enum for the backend options
|
|
class Backend(str, Enum):
|
|
PYPDFIUM2 = "pypdfium2"
|
|
DOCLING = "docling"
|
|
|
|
|
|
# Define an enum for the ocr engines
|
|
class OcrEngine(str, Enum):
|
|
EASYOCR = "easyocr"
|
|
TESSERACT_CLI = "tesseract_cli"
|
|
TESSERACT = "tesseract"
|
|
|
|
|
|
def export_documents(
|
|
conv_results: Iterable[ConversionResult],
|
|
output_dir: Path,
|
|
export_json: bool,
|
|
export_md: bool,
|
|
export_txt: bool,
|
|
export_doctags: bool,
|
|
):
|
|
|
|
success_count = 0
|
|
failure_count = 0
|
|
|
|
for conv_res in conv_results:
|
|
if conv_res.status == ConversionStatus.SUCCESS:
|
|
success_count += 1
|
|
doc_filename = conv_res.input.file.stem
|
|
|
|
# Export Deep Search document JSON format:
|
|
if export_json:
|
|
fname = output_dir / f"{doc_filename}.json"
|
|
with fname.open("w") as fp:
|
|
_log.info(f"writing JSON output to {fname}")
|
|
fp.write(json.dumps(conv_res.render_as_dict()))
|
|
|
|
# Export Text format:
|
|
if export_txt:
|
|
fname = output_dir / f"{doc_filename}.txt"
|
|
with fname.open("w") as fp:
|
|
_log.info(f"writing Text output to {fname}")
|
|
fp.write(conv_res.render_as_text())
|
|
|
|
# Export Markdown format:
|
|
if export_md:
|
|
fname = output_dir / f"{doc_filename}.md"
|
|
with fname.open("w") as fp:
|
|
_log.info(f"writing Markdown output to {fname}")
|
|
fp.write(conv_res.render_as_markdown())
|
|
|
|
# Export Document Tags format:
|
|
if export_doctags:
|
|
fname = output_dir / f"{doc_filename}.doctags"
|
|
with fname.open("w") as fp:
|
|
_log.info(f"writing Doc Tags output to {fname}")
|
|
fp.write(conv_res.render_as_doctags())
|
|
|
|
else:
|
|
_log.warning(f"Document {conv_res.input.file} failed to convert.")
|
|
failure_count += 1
|
|
|
|
_log.info(
|
|
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
|
|
)
|
|
|
|
|
|
@app.command(no_args_is_help=True)
|
|
def convert(
|
|
input_sources: Annotated[
|
|
List[str],
|
|
typer.Argument(
|
|
...,
|
|
metavar="source",
|
|
help="PDF files to convert. Can be local file / directory paths or URL.",
|
|
),
|
|
],
|
|
export_json: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
..., "--json/--no-json", help="If enabled the document is exported as JSON."
|
|
),
|
|
] = False,
|
|
export_md: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
..., "--md/--no-md", help="If enabled the document is exported as Markdown."
|
|
),
|
|
] = True,
|
|
export_txt: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
..., "--txt/--no-txt", help="If enabled the document is exported as Text."
|
|
),
|
|
] = False,
|
|
export_doctags: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
...,
|
|
"--doctags/--no-doctags",
|
|
help="If enabled the document is exported as Doc Tags.",
|
|
),
|
|
] = False,
|
|
ocr: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
..., help="If enabled, the bitmap content will be processed using OCR."
|
|
),
|
|
] = True,
|
|
backend: Annotated[
|
|
Backend, typer.Option(..., help="The PDF backend to use.")
|
|
] = Backend.DOCLING,
|
|
ocr_engine: Annotated[
|
|
OcrEngine, typer.Option(..., help="The OCR engine to use.")
|
|
] = OcrEngine.EASYOCR,
|
|
output: Annotated[
|
|
Path, typer.Option(..., help="Output directory where results are saved.")
|
|
] = Path("."),
|
|
version: Annotated[
|
|
Optional[bool],
|
|
typer.Option(
|
|
"--version",
|
|
callback=version_callback,
|
|
is_eager=True,
|
|
help="Show version information.",
|
|
),
|
|
] = None,
|
|
):
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
input_doc_paths: List[Path] = []
|
|
for src in input_sources:
|
|
source = resolve_file_source(source=src)
|
|
if not source.exists():
|
|
err_console.print(
|
|
f"[red]Error: The input file {source} does not exist.[/red]"
|
|
)
|
|
raise typer.Abort()
|
|
elif source.is_dir():
|
|
input_doc_paths.extend(list(source.glob("**/*.pdf")))
|
|
input_doc_paths.extend(list(source.glob("**/*.PDF")))
|
|
else:
|
|
input_doc_paths.append(source)
|
|
|
|
match backend:
|
|
case Backend.PYPDFIUM2:
|
|
do_cell_matching = ocr # only do cell matching when OCR enabled
|
|
pdf_backend = PyPdfiumDocumentBackend
|
|
case Backend.DOCLING:
|
|
do_cell_matching = True
|
|
pdf_backend = DoclingParseDocumentBackend
|
|
case _:
|
|
raise RuntimeError(f"Unexpected backend type {backend}")
|
|
|
|
match ocr_engine:
|
|
case OcrEngine.EASYOCR:
|
|
ocr_options = EasyOcrOptions()
|
|
case OcrEngine.TESSERACT_CLI:
|
|
ocr_options = TesseractCliOcrOptions()
|
|
case OcrEngine.TESSERACT:
|
|
ocr_options = TesseractOcrOptions()
|
|
case _:
|
|
raise RuntimeError(f"Unexpected backend type {backend}")
|
|
|
|
pipeline_options = PipelineOptions(
|
|
do_ocr=ocr,
|
|
ocr_options=ocr_options,
|
|
do_table_structure=True,
|
|
)
|
|
pipeline_options.table_structure_options.do_cell_matching = do_cell_matching
|
|
doc_converter = DocumentConverter(
|
|
pipeline_options=pipeline_options,
|
|
pdf_backend=pdf_backend,
|
|
)
|
|
|
|
# Define input files
|
|
input = DocumentConversionInput.from_paths(input_doc_paths)
|
|
|
|
start_time = time.time()
|
|
|
|
conv_results = doc_converter.convert(input)
|
|
|
|
output.mkdir(parents=True, exist_ok=True)
|
|
export_documents(
|
|
conv_results,
|
|
output_dir=output,
|
|
export_json=export_json,
|
|
export_md=export_md,
|
|
export_txt=export_txt,
|
|
export_doctags=export_doctags,
|
|
)
|
|
|
|
end_time = time.time() - start_time
|
|
|
|
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app()
|