Docling/docling/models/picture_description_vlm_model.py
Christoph Auer 598c9c53d4
fix: Secure torch model inits with global locks (#1884)
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
2025-07-04 07:27:26 +02:00

114 lines
3.9 KiB
Python

import threading
from collections.abc import Iterable
from pathlib import Path
from typing import Optional, Type, Union
from PIL import Image
from docling.datamodel.accelerator_options import AcceleratorOptions
from docling.datamodel.pipeline_options import (
PictureDescriptionBaseOptions,
PictureDescriptionVlmOptions,
)
from docling.models.picture_description_base_model import PictureDescriptionBaseModel
from docling.models.utils.hf_model_download import (
HuggingFaceModelDownloadMixin,
)
from docling.utils.accelerator_utils import decide_device
# Global lock for model initialization to prevent threading issues
_model_init_lock = threading.Lock()
class PictureDescriptionVlmModel(
PictureDescriptionBaseModel, HuggingFaceModelDownloadMixin
):
@classmethod
def get_options_type(cls) -> Type[PictureDescriptionBaseOptions]:
return PictureDescriptionVlmOptions
def __init__(
self,
enabled: bool,
enable_remote_services: bool,
artifacts_path: Optional[Union[Path, str]],
options: PictureDescriptionVlmOptions,
accelerator_options: AcceleratorOptions,
):
super().__init__(
enabled=enabled,
enable_remote_services=enable_remote_services,
artifacts_path=artifacts_path,
options=options,
accelerator_options=accelerator_options,
)
self.options: PictureDescriptionVlmOptions
if self.enabled:
if artifacts_path is None:
artifacts_path = self.download_models(repo_id=self.options.repo_id)
else:
artifacts_path = Path(artifacts_path) / self.options.repo_cache_folder
self.device = decide_device(accelerator_options.device)
try:
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor
except ImportError:
raise ImportError(
"transformers >=4.46 is not installed. Please install Docling with the required extras `pip install docling[vlm]`."
)
# Initialize processor and model
with _model_init_lock:
self.processor = AutoProcessor.from_pretrained(artifacts_path)
self.model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
).to(self.device)
self.provenance = f"{self.options.repo_id}"
def _annotate_images(self, images: Iterable[Image.Image]) -> Iterable[str]:
from transformers import GenerationConfig
# Create input messages
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": self.options.prompt},
],
},
]
# TODO: do batch generation
for image in images:
# Prepare inputs
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=True
)
inputs = self.processor(text=prompt, images=[image], return_tensors="pt")
inputs = inputs.to(self.device)
# Generate outputs
generated_ids = self.model.generate(
**inputs,
generation_config=GenerationConfig(**self.options.generation_config),
)
generated_texts = self.processor.batch_decode(
generated_ids[:, inputs["input_ids"].shape[1] :],
skip_special_tokens=True,
)
yield generated_texts[0].strip()