Docling/docling/models/layout_model.py
Christoph Auer ec6cf6f7e8
feat: Introduce LayoutOptions to control layout postprocessing behaviour (#1870)
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
2025-07-04 15:36:13 +02:00

218 lines
8.4 KiB
Python

import copy
import logging
import warnings
from collections.abc import Iterable
from pathlib import Path
from typing import Optional
import numpy as np
from docling_core.types.doc import DocItemLabel
from PIL import Image
from docling.datamodel.accelerator_options import AcceleratorOptions
from docling.datamodel.base_models import BoundingBox, Cluster, LayoutPrediction, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import LayoutOptions
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.models.utils.hf_model_download import download_hf_model
from docling.utils.accelerator_utils import decide_device
from docling.utils.layout_postprocessor import LayoutPostprocessor
from docling.utils.profiling import TimeRecorder
from docling.utils.visualization import draw_clusters
_log = logging.getLogger(__name__)
class LayoutModel(BasePageModel):
_model_repo_folder = "ds4sd--docling-models"
_model_path = "model_artifacts/layout"
TEXT_ELEM_LABELS = [
DocItemLabel.TEXT,
DocItemLabel.FOOTNOTE,
DocItemLabel.CAPTION,
DocItemLabel.CHECKBOX_UNSELECTED,
DocItemLabel.CHECKBOX_SELECTED,
DocItemLabel.SECTION_HEADER,
DocItemLabel.PAGE_HEADER,
DocItemLabel.PAGE_FOOTER,
DocItemLabel.CODE,
DocItemLabel.LIST_ITEM,
DocItemLabel.FORMULA,
]
PAGE_HEADER_LABELS = [DocItemLabel.PAGE_HEADER, DocItemLabel.PAGE_FOOTER]
TABLE_LABELS = [DocItemLabel.TABLE, DocItemLabel.DOCUMENT_INDEX]
FIGURE_LABEL = DocItemLabel.PICTURE
FORMULA_LABEL = DocItemLabel.FORMULA
CONTAINER_LABELS = [DocItemLabel.FORM, DocItemLabel.KEY_VALUE_REGION]
def __init__(
self,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
options: LayoutOptions,
):
from docling_ibm_models.layoutmodel.layout_predictor import LayoutPredictor
self.options = options
device = decide_device(accelerator_options.device)
if artifacts_path is None:
artifacts_path = self.download_models() / self._model_path
else:
# will become the default in the future
if (artifacts_path / self._model_repo_folder).exists():
artifacts_path = (
artifacts_path / self._model_repo_folder / self._model_path
)
elif (artifacts_path / self._model_path).exists():
warnings.warn(
"The usage of artifacts_path containing directly "
f"{self._model_path} is deprecated. Please point "
"the artifacts_path to the parent containing "
f"the {self._model_repo_folder} folder.",
DeprecationWarning,
stacklevel=3,
)
artifacts_path = artifacts_path / self._model_path
self.layout_predictor = LayoutPredictor(
artifact_path=str(artifacts_path),
device=device,
num_threads=accelerator_options.num_threads,
)
@staticmethod
def download_models(
local_dir: Optional[Path] = None,
force: bool = False,
progress: bool = False,
) -> Path:
return download_hf_model(
repo_id="ds4sd/docling-models",
revision="v2.2.0",
local_dir=local_dir,
force=force,
progress=progress,
)
def draw_clusters_and_cells_side_by_side(
self, conv_res, page, clusters, mode_prefix: str, show: bool = False
):
"""
Draws a page image side by side with clusters filtered into two categories:
- Left: Clusters excluding FORM, KEY_VALUE_REGION, and PICTURE.
- Right: Clusters including FORM, KEY_VALUE_REGION, and PICTURE.
Includes label names and confidence scores for each cluster.
"""
scale_x = page.image.width / page.size.width
scale_y = page.image.height / page.size.height
# Filter clusters for left and right images
exclude_labels = {
DocItemLabel.FORM,
DocItemLabel.KEY_VALUE_REGION,
DocItemLabel.PICTURE,
}
left_clusters = [c for c in clusters if c.label not in exclude_labels]
right_clusters = [c for c in clusters if c.label in exclude_labels]
# Create a deep copy of the original image for both sides
left_image = copy.deepcopy(page.image)
right_image = copy.deepcopy(page.image)
# Draw clusters on both images
draw_clusters(left_image, left_clusters, scale_x, scale_y)
draw_clusters(right_image, right_clusters, scale_x, scale_y)
# Combine the images side by side
combined_width = left_image.width * 2
combined_height = left_image.height
combined_image = Image.new("RGB", (combined_width, combined_height))
combined_image.paste(left_image, (0, 0))
combined_image.paste(right_image, (left_image.width, 0))
if show:
combined_image.show()
else:
out_path: Path = (
Path(settings.debug.debug_output_path)
/ f"debug_{conv_res.input.file.stem}"
)
out_path.mkdir(parents=True, exist_ok=True)
out_file = out_path / f"{mode_prefix}_layout_page_{page.page_no:05}.png"
combined_image.save(str(out_file), format="png")
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "layout"):
assert page.size is not None
page_image = page.get_image(scale=1.0)
assert page_image is not None
clusters = []
for ix, pred_item in enumerate(
self.layout_predictor.predict(page_image)
):
label = DocItemLabel(
pred_item["label"]
.lower()
.replace(" ", "_")
.replace("-", "_")
) # Temporary, until docling-ibm-model uses docling-core types
cluster = Cluster(
id=ix,
label=label,
confidence=pred_item["confidence"],
bbox=BoundingBox.model_validate(pred_item),
cells=[],
)
clusters.append(cluster)
if settings.debug.visualize_raw_layout:
self.draw_clusters_and_cells_side_by_side(
conv_res, page, clusters, mode_prefix="raw"
)
# Apply postprocessing
processed_clusters, processed_cells = LayoutPostprocessor(
page, clusters, self.options
).postprocess()
# Note: LayoutPostprocessor updates page.cells and page.parsed_page internally
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
"Mean of empty slice|invalid value encountered in scalar divide",
RuntimeWarning,
"numpy",
)
conv_res.confidence.pages[page.page_no].layout_score = float(
np.mean([c.confidence for c in processed_clusters])
)
conv_res.confidence.pages[page.page_no].ocr_score = float(
np.mean(
[c.confidence for c in processed_cells if c.from_ocr]
)
)
page.predictions.layout = LayoutPrediction(
clusters=processed_clusters
)
if settings.debug.visualize_layout:
self.draw_clusters_and_cells_side_by_side(
conv_res, page, processed_clusters, mode_prefix="postprocessed"
)
yield page