Michele Dolfi e45dc5d1a5 ci: Add Github Actions (#4)
* add Github Actions

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* apply styling

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Update .github/actions/setup-poetry/action.yml

Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>

* add semantic-release config

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
2024-07-16 13:05:04 +02:00
2024-07-16 13:05:04 +02:00
2024-07-16 13:05:04 +02:00
2024-07-15 18:02:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-16 13:05:04 +02:00
2024-07-15 09:42:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-15 09:42:42 +02:00
2024-07-16 13:05:04 +02:00
2024-07-15 14:59:53 +02:00

Docling

Docling

Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package.

Features

  • Converts any PDF document to JSON or Markdown format, stable and lightning fast
  • 📑 Understands detailed page layout, reading order and recovers table structures
  • 📝 Extracts metadata from the document, such as title, authors, references and language
  • 🔍 Optionally applies OCR (use with scanned PDFs)

Setup

You need Python 3.11 and poetry. Install poetry from here.

Once you have poetry installed, create an environment and install the package:

poetry env use $(which python3.11)
poetry shell
poetry install

Notes:

  • Works on macOS and Linux environments. Windows platforms are currently not tested.

Usage

For basic usage, see the convert.py example module. Run with:

python examples/convert.py

The output of the above command will be written to ./scratch.

Enable or disable pipeline features

You can control if table structure recognition or OCR should be performed by arguments passed to DocumentConverter

doc_converter = DocumentConverter(
    artifacts_path=artifacts_path,
    pipeline_options=PipelineOptions(do_table_structure=False, # Controls if table structure is recovered. 
                                     do_ocr=True), # Controls if OCR is applied (ignores programmatic content)
)

Impose limits on the document size

You can limit the file size and number of pages which should be allowed to process per document.

paths = [Path("./test/data/2206.01062.pdf")]

input = DocumentConversionInput.from_paths(
    paths, limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
)

Convert from binary PDF streams

You can convert PDFs from a binary stream instead of from the filesystem as follows:

buf = BytesIO(your_binary_stream)
docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
input = DocumentConversionInput.from_streams(docs)
converted_docs = doc_converter.convert(input)

Limit resource usage

You can limit the CPU threads used by docling by setting the environment variable OMP_NUM_THREADS accordingly. The default setting is using 4 CPU threads.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@software{Docling,
author = {Deep Search Team},
month = {7},
title = {{Docling}},
url = {https://github.com/DS4SD/docling},
version = {main},
year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

Description
Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
Readme 55 MiB
Languages
Python 97.9%
Shell 1.6%
Dockerfile 0.5%