Docling/tests/test_e2e_ocr_conversion.py
Peter W. J. Staar cfdf4cea25
feat: new vlm-models support (#1570)
* feat: adding new vlm-models support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* got microsoft/Phi-4-multimodal-instruct to work

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* working on vlm's

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the VLM part

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* all working, now serious refacgtoring necessary

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the download_model

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the formulate_prompt

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* pixtral 12b runs via MLX and native transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the VlmPredictionToken

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring minimal_vlm_pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the MyPy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added pipeline_model_specializations file

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* need to get Phi4 working again ...

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* finalising last points for vlms support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the pipeline for Phi4

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* streamlining all code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixing the tests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the html backend to the VLM pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the static load_from_doctags

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* restore stable imports

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use AutoModelForVision2Seq for Pixtral and review example (including rename)

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove unused value

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* refactor instances of VLM models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* skip compare example in CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use lowercase and uppercase only

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename pipeline_vlm_model_spec

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* move more argument to options and simplify model init

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add supported_devices

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove not-needed function

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* exclude minimal_vlm

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* missing file

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add message for transformers version

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename to specs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use module import and remove MLX from non-darwin

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove hf_vlm_model and add extra_generation_args

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use single HF VLM model class

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove torch type

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add docs for vision models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-02 17:01:06 +02:00

105 lines
3.4 KiB
Python

import sys
from pathlib import Path
from typing import List, Tuple
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.accelerator_options import AcceleratorDevice
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrMacOptions,
OcrOptions,
PdfPipelineOptions,
RapidOcrOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from .test_data_gen_flag import GEN_TEST_DATA
from .verify_utils import verify_conversion_result_v1, verify_conversion_result_v2
GENERATE_V1 = GEN_TEST_DATA
GENERATE_V2 = GEN_TEST_DATA
def get_pdf_paths():
# Define the directory you want to search
directory = Path("./tests/data_scanned")
# List all PDF files in the directory and its subdirectories
pdf_files = sorted(directory.rglob("*.pdf"))
return pdf_files
def get_converter(ocr_options: OcrOptions):
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
pipeline_options.ocr_options = ocr_options
pipeline_options.accelerator_options.device = AcceleratorDevice.CPU
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=DoclingParseDocumentBackend,
)
}
)
return converter
def test_e2e_conversions():
pdf_paths = get_pdf_paths()
engines: List[Tuple[OcrOptions, bool]] = [
(EasyOcrOptions(), False),
(TesseractOcrOptions(), True),
(TesseractCliOcrOptions(), True),
(EasyOcrOptions(force_full_page_ocr=True), False),
(TesseractOcrOptions(force_full_page_ocr=True), True),
(TesseractOcrOptions(force_full_page_ocr=True, lang=["auto"]), True),
(TesseractCliOcrOptions(force_full_page_ocr=True), True),
(TesseractCliOcrOptions(force_full_page_ocr=True, lang=["auto"]), True),
]
# rapidocr is only available for Python >=3.6,<3.13
if sys.version_info < (3, 13):
engines.append((RapidOcrOptions(), False))
engines.append((RapidOcrOptions(force_full_page_ocr=True), False))
# only works on mac
if "darwin" == sys.platform:
engines.append((OcrMacOptions(), True))
engines.append((OcrMacOptions(force_full_page_ocr=True), True))
for ocr_options, supports_rotation in engines:
print(
f"Converting with ocr_engine: {ocr_options.kind}, language: {ocr_options.lang}"
)
converter = get_converter(ocr_options=ocr_options)
for pdf_path in pdf_paths:
if not supports_rotation and "rotated" in pdf_path.name:
continue
print(f"converting {pdf_path}")
doc_result: ConversionResult = converter.convert(pdf_path)
verify_conversion_result_v1(
input_path=pdf_path,
doc_result=doc_result,
generate=GENERATE_V1,
fuzzy=True,
)
verify_conversion_result_v2(
input_path=pdf_path,
doc_result=doc_result,
generate=GENERATE_V2,
fuzzy=True,
)