
* feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
387 lines
15 KiB
Python
387 lines
15 KiB
Python
import logging
|
|
import re
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
from typing import List, Optional, Union, cast
|
|
|
|
from docling_core.types.doc import (
|
|
BoundingBox,
|
|
DocItem,
|
|
DoclingDocument,
|
|
ImageRef,
|
|
PictureItem,
|
|
ProvenanceItem,
|
|
TextItem,
|
|
)
|
|
from docling_core.types.doc.base import (
|
|
BoundingBox,
|
|
Size,
|
|
)
|
|
from docling_core.types.doc.document import DocTagsDocument
|
|
from PIL import Image as PILImage
|
|
|
|
from docling.backend.abstract_backend import AbstractDocumentBackend
|
|
from docling.backend.html_backend import HTMLDocumentBackend
|
|
from docling.backend.md_backend import MarkdownDocumentBackend
|
|
from docling.backend.pdf_backend import PdfDocumentBackend
|
|
from docling.datamodel.base_models import InputFormat, Page
|
|
from docling.datamodel.document import ConversionResult, InputDocument
|
|
from docling.datamodel.pipeline_options import (
|
|
VlmPipelineOptions,
|
|
)
|
|
from docling.datamodel.pipeline_options_vlm_model import (
|
|
ApiVlmOptions,
|
|
InferenceFramework,
|
|
InlineVlmOptions,
|
|
ResponseFormat,
|
|
)
|
|
from docling.datamodel.settings import settings
|
|
from docling.models.api_vlm_model import ApiVlmModel
|
|
from docling.models.vlm_models_inline.hf_transformers_model import (
|
|
HuggingFaceTransformersVlmModel,
|
|
)
|
|
from docling.models.vlm_models_inline.mlx_model import HuggingFaceMlxModel
|
|
from docling.pipeline.base_pipeline import PaginatedPipeline
|
|
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class VlmPipeline(PaginatedPipeline):
|
|
def __init__(self, pipeline_options: VlmPipelineOptions):
|
|
super().__init__(pipeline_options)
|
|
self.keep_backend = True
|
|
|
|
self.pipeline_options: VlmPipelineOptions
|
|
|
|
artifacts_path: Optional[Path] = None
|
|
if pipeline_options.artifacts_path is not None:
|
|
artifacts_path = Path(pipeline_options.artifacts_path).expanduser()
|
|
elif settings.artifacts_path is not None:
|
|
artifacts_path = Path(settings.artifacts_path).expanduser()
|
|
|
|
if artifacts_path is not None and not artifacts_path.is_dir():
|
|
raise RuntimeError(
|
|
f"The value of {artifacts_path=} is not valid. "
|
|
"When defined, it must point to a folder containing all models required by the pipeline."
|
|
)
|
|
|
|
# force_backend_text = False - use text that is coming from VLM response
|
|
# force_backend_text = True - get text from backend using bounding boxes predicted by SmolDocling doctags
|
|
self.force_backend_text = (
|
|
pipeline_options.force_backend_text
|
|
and pipeline_options.vlm_options.response_format == ResponseFormat.DOCTAGS
|
|
)
|
|
|
|
self.keep_images = self.pipeline_options.generate_page_images
|
|
|
|
if isinstance(pipeline_options.vlm_options, ApiVlmOptions):
|
|
self.build_pipe = [
|
|
ApiVlmModel(
|
|
enabled=True, # must be always enabled for this pipeline to make sense.
|
|
enable_remote_services=self.pipeline_options.enable_remote_services,
|
|
vlm_options=cast(ApiVlmOptions, self.pipeline_options.vlm_options),
|
|
),
|
|
]
|
|
elif isinstance(self.pipeline_options.vlm_options, InlineVlmOptions):
|
|
vlm_options = cast(InlineVlmOptions, self.pipeline_options.vlm_options)
|
|
if vlm_options.inference_framework == InferenceFramework.MLX:
|
|
self.build_pipe = [
|
|
HuggingFaceMlxModel(
|
|
enabled=True, # must be always enabled for this pipeline to make sense.
|
|
artifacts_path=artifacts_path,
|
|
accelerator_options=pipeline_options.accelerator_options,
|
|
vlm_options=vlm_options,
|
|
),
|
|
]
|
|
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS:
|
|
self.build_pipe = [
|
|
HuggingFaceTransformersVlmModel(
|
|
enabled=True, # must be always enabled for this pipeline to make sense.
|
|
artifacts_path=artifacts_path,
|
|
accelerator_options=pipeline_options.accelerator_options,
|
|
vlm_options=vlm_options,
|
|
),
|
|
]
|
|
else:
|
|
raise ValueError(
|
|
f"Could not instantiate the right type of VLM pipeline: {vlm_options.inference_framework}"
|
|
)
|
|
|
|
self.enrichment_pipe = [
|
|
# Other models working on `NodeItem` elements in the DoclingDocument
|
|
]
|
|
|
|
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
|
|
with TimeRecorder(conv_res, "page_init"):
|
|
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
|
|
if page._backend is not None and page._backend.is_valid():
|
|
page.size = page._backend.get_size()
|
|
|
|
return page
|
|
|
|
def extract_text_from_backend(
|
|
self, page: Page, bbox: Union[BoundingBox, None]
|
|
) -> str:
|
|
# Convert bounding box normalized to 0-100 into page coordinates for cropping
|
|
text = ""
|
|
if bbox:
|
|
if page.size:
|
|
if page._backend:
|
|
text = page._backend.get_text_in_rect(bbox)
|
|
return text
|
|
|
|
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
|
|
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
|
|
if (
|
|
self.pipeline_options.vlm_options.response_format
|
|
== ResponseFormat.DOCTAGS
|
|
):
|
|
conv_res.document = self._turn_dt_into_doc(conv_res)
|
|
|
|
elif (
|
|
self.pipeline_options.vlm_options.response_format
|
|
== ResponseFormat.MARKDOWN
|
|
):
|
|
conv_res.document = self._turn_md_into_doc(conv_res)
|
|
|
|
elif (
|
|
self.pipeline_options.vlm_options.response_format == ResponseFormat.HTML
|
|
):
|
|
conv_res.document = self._turn_html_into_doc(conv_res)
|
|
|
|
else:
|
|
raise RuntimeError(
|
|
f"Unsupported VLM response format {self.pipeline_options.vlm_options.response_format}"
|
|
)
|
|
|
|
# Generate images of the requested element types
|
|
if self.pipeline_options.generate_picture_images:
|
|
scale = self.pipeline_options.images_scale
|
|
for element, _level in conv_res.document.iterate_items():
|
|
if not isinstance(element, DocItem) or len(element.prov) == 0:
|
|
continue
|
|
if (
|
|
isinstance(element, PictureItem)
|
|
and self.pipeline_options.generate_picture_images
|
|
):
|
|
page_ix = element.prov[0].page_no - 1
|
|
page = conv_res.pages[page_ix]
|
|
assert page.size is not None
|
|
assert page.image is not None
|
|
|
|
crop_bbox = (
|
|
element.prov[0]
|
|
.bbox.scaled(scale=scale)
|
|
.to_top_left_origin(page_height=page.size.height * scale)
|
|
)
|
|
|
|
cropped_im = page.image.crop(crop_bbox.as_tuple())
|
|
element.image = ImageRef.from_pil(
|
|
cropped_im, dpi=int(72 * scale)
|
|
)
|
|
|
|
return conv_res
|
|
|
|
def _turn_dt_into_doc(self, conv_res) -> DoclingDocument:
|
|
doctags_list = []
|
|
image_list = []
|
|
for page in conv_res.pages:
|
|
predicted_doctags = ""
|
|
img = PILImage.new("RGB", (1, 1), "rgb(255,255,255)")
|
|
if page.predictions.vlm_response:
|
|
predicted_doctags = page.predictions.vlm_response.text
|
|
if page.image:
|
|
img = page.image
|
|
image_list.append(img)
|
|
doctags_list.append(predicted_doctags)
|
|
|
|
doctags_list_c = cast(List[Union[Path, str]], doctags_list)
|
|
image_list_c = cast(List[Union[Path, PILImage.Image]], image_list)
|
|
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs(
|
|
doctags_list_c, image_list_c
|
|
)
|
|
conv_res.document = DoclingDocument.load_from_doctags(
|
|
doctag_document=doctags_doc
|
|
)
|
|
|
|
# If forced backend text, replace model predicted text with backend one
|
|
if page.size:
|
|
if self.force_backend_text:
|
|
scale = self.pipeline_options.images_scale
|
|
for element, _level in conv_res.document.iterate_items():
|
|
if not isinstance(element, TextItem) or len(element.prov) == 0:
|
|
continue
|
|
crop_bbox = (
|
|
element.prov[0]
|
|
.bbox.scaled(scale=scale)
|
|
.to_top_left_origin(page_height=page.size.height * scale)
|
|
)
|
|
txt = self.extract_text_from_backend(page, crop_bbox)
|
|
element.text = txt
|
|
element.orig = txt
|
|
|
|
return conv_res.document
|
|
|
|
def _turn_md_into_doc(self, conv_res):
|
|
def _extract_markdown_code(text):
|
|
"""
|
|
Extracts text from markdown code blocks (enclosed in triple backticks).
|
|
If no code blocks are found, returns the original text.
|
|
|
|
Args:
|
|
text (str): Input text that may contain markdown code blocks
|
|
|
|
Returns:
|
|
str: Extracted code if code blocks exist, otherwise original text
|
|
"""
|
|
# Regex pattern to match content between triple backticks
|
|
# This handles multiline content and optional language specifier
|
|
pattern = r"^```(?:\w*\n)?(.*?)```(\n)*$"
|
|
|
|
# Search with DOTALL flag to match across multiple lines
|
|
mtch = re.search(pattern, text, re.DOTALL)
|
|
|
|
if mtch:
|
|
# Return only the content of the first capturing group
|
|
return mtch.group(1)
|
|
else:
|
|
# No code blocks found, return original text
|
|
return text
|
|
|
|
for pg_idx, page in enumerate(conv_res.pages):
|
|
page_no = pg_idx + 1 # FIXME: might be incorrect
|
|
|
|
predicted_text = ""
|
|
if page.predictions.vlm_response:
|
|
predicted_text = page.predictions.vlm_response.text + "\n\n"
|
|
|
|
predicted_text = _extract_markdown_code(text=predicted_text)
|
|
|
|
response_bytes = BytesIO(predicted_text.encode("utf8"))
|
|
out_doc = InputDocument(
|
|
path_or_stream=response_bytes,
|
|
filename=conv_res.input.file.name,
|
|
format=InputFormat.MD,
|
|
backend=MarkdownDocumentBackend,
|
|
)
|
|
backend = MarkdownDocumentBackend(
|
|
in_doc=out_doc,
|
|
path_or_stream=response_bytes,
|
|
)
|
|
page_doc = backend.convert()
|
|
|
|
if page.image is not None:
|
|
pg_width = page.image.width
|
|
pg_height = page.image.height
|
|
else:
|
|
pg_width = 1
|
|
pg_height = 1
|
|
|
|
conv_res.document.add_page(
|
|
page_no=page_no,
|
|
size=Size(width=pg_width, height=pg_height),
|
|
image=ImageRef.from_pil(image=page.image, dpi=72)
|
|
if page.image
|
|
else None,
|
|
)
|
|
|
|
for item, level in page_doc.iterate_items():
|
|
item.prov = [
|
|
ProvenanceItem(
|
|
page_no=pg_idx + 1,
|
|
bbox=BoundingBox(
|
|
t=0.0, b=0.0, l=0.0, r=0.0
|
|
), # FIXME: would be nice not to have to "fake" it
|
|
charspan=[0, 0],
|
|
)
|
|
]
|
|
conv_res.document.append_child_item(child=item)
|
|
|
|
return conv_res.document
|
|
|
|
def _turn_html_into_doc(self, conv_res):
|
|
def _extract_html_code(text):
|
|
"""
|
|
Extracts text from markdown code blocks (enclosed in triple backticks).
|
|
If no code blocks are found, returns the original text.
|
|
|
|
Args:
|
|
text (str): Input text that may contain markdown code blocks
|
|
|
|
Returns:
|
|
str: Extracted code if code blocks exist, otherwise original text
|
|
"""
|
|
# Regex pattern to match content between triple backticks
|
|
# This handles multiline content and optional language specifier
|
|
pattern = r"^```(?:\w*\n)?(.*?)```(\n)*$"
|
|
|
|
# Search with DOTALL flag to match across multiple lines
|
|
mtch = re.search(pattern, text, re.DOTALL)
|
|
|
|
if mtch:
|
|
# Return only the content of the first capturing group
|
|
return mtch.group(1)
|
|
else:
|
|
# No code blocks found, return original text
|
|
return text
|
|
|
|
for pg_idx, page in enumerate(conv_res.pages):
|
|
page_no = pg_idx + 1 # FIXME: might be incorrect
|
|
|
|
predicted_text = ""
|
|
if page.predictions.vlm_response:
|
|
predicted_text = page.predictions.vlm_response.text + "\n\n"
|
|
|
|
predicted_text = _extract_html_code(text=predicted_text)
|
|
|
|
response_bytes = BytesIO(predicted_text.encode("utf8"))
|
|
out_doc = InputDocument(
|
|
path_or_stream=response_bytes,
|
|
filename=conv_res.input.file.name,
|
|
format=InputFormat.MD,
|
|
backend=HTMLDocumentBackend,
|
|
)
|
|
backend = HTMLDocumentBackend(
|
|
in_doc=out_doc,
|
|
path_or_stream=response_bytes,
|
|
)
|
|
page_doc = backend.convert()
|
|
|
|
if page.image is not None:
|
|
pg_width = page.image.width
|
|
pg_height = page.image.height
|
|
else:
|
|
pg_width = 1
|
|
pg_height = 1
|
|
|
|
conv_res.document.add_page(
|
|
page_no=page_no,
|
|
size=Size(width=pg_width, height=pg_height),
|
|
image=ImageRef.from_pil(image=page.image, dpi=72)
|
|
if page.image
|
|
else None,
|
|
)
|
|
|
|
for item, level in page_doc.iterate_items():
|
|
item.prov = [
|
|
ProvenanceItem(
|
|
page_no=pg_idx + 1,
|
|
bbox=BoundingBox(
|
|
t=0.0, b=0.0, l=0.0, r=0.0
|
|
), # FIXME: would be nice not to have to "fake" it
|
|
charspan=[0, 0],
|
|
)
|
|
]
|
|
conv_res.document.append_child_item(child=item)
|
|
|
|
return conv_res.document
|
|
|
|
@classmethod
|
|
def get_default_options(cls) -> VlmPipelineOptions:
|
|
return VlmPipelineOptions()
|
|
|
|
@classmethod
|
|
def is_backend_supported(cls, backend: AbstractDocumentBackend):
|
|
return isinstance(backend, PdfDocumentBackend)
|