
* feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
148 lines
5.6 KiB
Python
148 lines
5.6 KiB
Python
import logging
|
|
import time
|
|
from collections.abc import Iterable
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
from docling.datamodel.accelerator_options import (
|
|
AcceleratorOptions,
|
|
)
|
|
from docling.datamodel.base_models import Page, VlmPrediction, VlmPredictionToken
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
|
from docling.models.base_model import BasePageModel
|
|
from docling.models.utils.hf_model_download import (
|
|
HuggingFaceModelDownloadMixin,
|
|
)
|
|
from docling.utils.profiling import TimeRecorder
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class HuggingFaceMlxModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
|
def __init__(
|
|
self,
|
|
enabled: bool,
|
|
artifacts_path: Optional[Path],
|
|
accelerator_options: AcceleratorOptions,
|
|
vlm_options: InlineVlmOptions,
|
|
):
|
|
self.enabled = enabled
|
|
|
|
self.vlm_options = vlm_options
|
|
self.max_tokens = vlm_options.max_new_tokens
|
|
self.temperature = vlm_options.temperature
|
|
|
|
if self.enabled:
|
|
try:
|
|
from mlx_vlm import generate, load # type: ignore
|
|
from mlx_vlm.prompt_utils import apply_chat_template # type: ignore
|
|
from mlx_vlm.utils import load_config, stream_generate # type: ignore
|
|
except ImportError:
|
|
raise ImportError(
|
|
"mlx-vlm is not installed. Please install it via `pip install mlx-vlm` to use MLX VLM models."
|
|
)
|
|
|
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
|
|
|
self.apply_chat_template = apply_chat_template
|
|
self.stream_generate = stream_generate
|
|
|
|
# PARAMETERS:
|
|
if artifacts_path is None:
|
|
artifacts_path = self.download_models(
|
|
self.vlm_options.repo_id,
|
|
)
|
|
elif (artifacts_path / repo_cache_folder).exists():
|
|
artifacts_path = artifacts_path / repo_cache_folder
|
|
|
|
self.param_question = vlm_options.prompt
|
|
|
|
## Load the model
|
|
self.vlm_model, self.processor = load(artifacts_path)
|
|
self.config = load_config(artifacts_path)
|
|
|
|
def __call__(
|
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
|
) -> Iterable[Page]:
|
|
for page in page_batch:
|
|
assert page._backend is not None
|
|
if not page._backend.is_valid():
|
|
yield page
|
|
else:
|
|
with TimeRecorder(conv_res, f"vlm-mlx-{self.vlm_options.repo_id}"):
|
|
assert page.size is not None
|
|
|
|
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
|
if hi_res_image is not None:
|
|
im_width, im_height = hi_res_image.size
|
|
|
|
# populate page_tags with predicted doc tags
|
|
page_tags = ""
|
|
|
|
if hi_res_image:
|
|
if hi_res_image.mode != "RGB":
|
|
hi_res_image = hi_res_image.convert("RGB")
|
|
|
|
prompt = self.apply_chat_template(
|
|
self.processor, self.config, self.param_question, num_images=1
|
|
)
|
|
|
|
start_time = time.time()
|
|
_log.debug("start generating ...")
|
|
|
|
# Call model to generate:
|
|
tokens: list[VlmPredictionToken] = []
|
|
|
|
output = ""
|
|
for token in self.stream_generate(
|
|
self.vlm_model,
|
|
self.processor,
|
|
prompt,
|
|
[hi_res_image],
|
|
max_tokens=self.max_tokens,
|
|
verbose=False,
|
|
temp=self.temperature,
|
|
):
|
|
if len(token.logprobs.shape) == 1:
|
|
tokens.append(
|
|
VlmPredictionToken(
|
|
text=token.text,
|
|
token=token.token,
|
|
logprob=token.logprobs[token.token],
|
|
)
|
|
)
|
|
elif (
|
|
len(token.logprobs.shape) == 2
|
|
and token.logprobs.shape[0] == 1
|
|
):
|
|
tokens.append(
|
|
VlmPredictionToken(
|
|
text=token.text,
|
|
token=token.token,
|
|
logprob=token.logprobs[0, token.token],
|
|
)
|
|
)
|
|
else:
|
|
_log.warning(
|
|
f"incompatible shape for logprobs: {token.logprobs.shape}"
|
|
)
|
|
|
|
output += token.text
|
|
if "</doctag>" in token.text:
|
|
break
|
|
|
|
generation_time = time.time() - start_time
|
|
page_tags = output
|
|
|
|
_log.debug(
|
|
f"{generation_time:.2f} seconds for {len(tokens)} tokens ({len(tokens) / generation_time} tokens/sec)."
|
|
)
|
|
page.predictions.vlm_response = VlmPrediction(
|
|
text=page_tags,
|
|
generation_time=generation_time,
|
|
generated_tokens=tokens,
|
|
)
|
|
|
|
yield page
|