
* feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
195 lines
7.1 KiB
Python
195 lines
7.1 KiB
Python
import importlib.metadata
|
|
import logging
|
|
import time
|
|
from collections.abc import Iterable
|
|
from pathlib import Path
|
|
from typing import Any, Optional
|
|
|
|
from docling.datamodel.accelerator_options import (
|
|
AcceleratorOptions,
|
|
)
|
|
from docling.datamodel.base_models import Page, VlmPrediction
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options_vlm_model import (
|
|
InlineVlmOptions,
|
|
TransformersModelType,
|
|
)
|
|
from docling.models.base_model import BasePageModel
|
|
from docling.models.utils.hf_model_download import (
|
|
HuggingFaceModelDownloadMixin,
|
|
)
|
|
from docling.utils.accelerator_utils import decide_device
|
|
from docling.utils.profiling import TimeRecorder
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
|
def __init__(
|
|
self,
|
|
enabled: bool,
|
|
artifacts_path: Optional[Path],
|
|
accelerator_options: AcceleratorOptions,
|
|
vlm_options: InlineVlmOptions,
|
|
):
|
|
self.enabled = enabled
|
|
|
|
self.vlm_options = vlm_options
|
|
|
|
if self.enabled:
|
|
import torch
|
|
from transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForVision2Seq,
|
|
AutoProcessor,
|
|
BitsAndBytesConfig,
|
|
GenerationConfig,
|
|
)
|
|
|
|
transformers_version = importlib.metadata.version("transformers")
|
|
if (
|
|
self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct"
|
|
and transformers_version >= "4.52.0"
|
|
):
|
|
raise NotImplementedError(
|
|
f"Phi 4 only works with transformers<4.52.0 but you have {transformers_version=}. Please downgrage running pip install -U 'transformers<4.52.0'."
|
|
)
|
|
|
|
self.device = decide_device(
|
|
accelerator_options.device,
|
|
supported_devices=vlm_options.supported_devices,
|
|
)
|
|
_log.debug(f"Available device for VLM: {self.device}")
|
|
|
|
self.use_cache = vlm_options.use_kv_cache
|
|
self.max_new_tokens = vlm_options.max_new_tokens
|
|
self.temperature = vlm_options.temperature
|
|
|
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
|
|
|
if artifacts_path is None:
|
|
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
|
elif (artifacts_path / repo_cache_folder).exists():
|
|
artifacts_path = artifacts_path / repo_cache_folder
|
|
|
|
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
|
|
if vlm_options.quantized:
|
|
self.param_quantization_config = BitsAndBytesConfig(
|
|
load_in_8bit=vlm_options.load_in_8bit,
|
|
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
|
)
|
|
|
|
model_cls: Any = AutoModel
|
|
if (
|
|
self.vlm_options.transformers_model_type
|
|
== TransformersModelType.AUTOMODEL_CAUSALLM
|
|
):
|
|
model_cls = AutoModelForCausalLM
|
|
elif (
|
|
self.vlm_options.transformers_model_type
|
|
== TransformersModelType.AUTOMODEL_VISION2SEQ
|
|
):
|
|
model_cls = AutoModelForVision2Seq
|
|
|
|
self.processor = AutoProcessor.from_pretrained(
|
|
artifacts_path,
|
|
trust_remote_code=vlm_options.trust_remote_code,
|
|
)
|
|
self.vlm_model = model_cls.from_pretrained(
|
|
artifacts_path,
|
|
device_map=self.device,
|
|
_attn_implementation=(
|
|
"flash_attention_2"
|
|
if self.device.startswith("cuda")
|
|
and accelerator_options.cuda_use_flash_attention2
|
|
else "eager"
|
|
),
|
|
trust_remote_code=vlm_options.trust_remote_code,
|
|
)
|
|
|
|
# Load generation config
|
|
self.generation_config = GenerationConfig.from_pretrained(artifacts_path)
|
|
|
|
def __call__(
|
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
|
) -> Iterable[Page]:
|
|
for page in page_batch:
|
|
assert page._backend is not None
|
|
if not page._backend.is_valid():
|
|
yield page
|
|
else:
|
|
with TimeRecorder(conv_res, "vlm"):
|
|
assert page.size is not None
|
|
|
|
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
|
|
|
# Define prompt structure
|
|
prompt = self.formulate_prompt()
|
|
|
|
inputs = self.processor(
|
|
text=prompt, images=[hi_res_image], return_tensors="pt"
|
|
).to(self.device)
|
|
|
|
start_time = time.time()
|
|
# Call model to generate:
|
|
generated_ids = self.vlm_model.generate(
|
|
**inputs,
|
|
max_new_tokens=self.max_new_tokens,
|
|
use_cache=self.use_cache,
|
|
temperature=self.temperature,
|
|
generation_config=self.generation_config,
|
|
**self.vlm_options.extra_generation_config,
|
|
)
|
|
|
|
generation_time = time.time() - start_time
|
|
generated_texts = self.processor.batch_decode(
|
|
generated_ids[:, inputs["input_ids"].shape[1] :],
|
|
skip_special_tokens=False,
|
|
)[0]
|
|
|
|
num_tokens = len(generated_ids[0])
|
|
_log.debug(
|
|
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
|
)
|
|
page.predictions.vlm_response = VlmPrediction(
|
|
text=generated_texts,
|
|
generation_time=generation_time,
|
|
)
|
|
|
|
yield page
|
|
|
|
def formulate_prompt(self) -> str:
|
|
"""Formulate a prompt for the VLM."""
|
|
|
|
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
|
|
_log.debug("Using specialized prompt for Phi-4")
|
|
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
|
|
|
|
user_prompt = "<|user|>"
|
|
assistant_prompt = "<|assistant|>"
|
|
prompt_suffix = "<|end|>"
|
|
|
|
prompt = f"{user_prompt}<|image_1|>{self.vlm_options.prompt}{prompt_suffix}{assistant_prompt}"
|
|
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
|
|
|
|
return prompt
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "This is a page from a document.",
|
|
},
|
|
{"type": "image"},
|
|
{"type": "text", "text": self.vlm_options.prompt},
|
|
],
|
|
}
|
|
]
|
|
prompt = self.processor.apply_chat_template(
|
|
messages, add_generation_prompt=False
|
|
)
|
|
return prompt
|