Docling/docling/models/tesseract_ocr_model.py
Peter W. J. Staar cfdf4cea25
feat: new vlm-models support (#1570)
* feat: adding new vlm-models support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* got microsoft/Phi-4-multimodal-instruct to work

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* working on vlm's

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the VLM part

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* all working, now serious refacgtoring necessary

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the download_model

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the formulate_prompt

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* pixtral 12b runs via MLX and native transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the VlmPredictionToken

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring minimal_vlm_pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the MyPy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added pipeline_model_specializations file

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* need to get Phi4 working again ...

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* finalising last points for vlms support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the pipeline for Phi4

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* streamlining all code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixing the tests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the html backend to the VLM pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the static load_from_doctags

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* restore stable imports

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use AutoModelForVision2Seq for Pixtral and review example (including rename)

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove unused value

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* refactor instances of VLM models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* skip compare example in CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use lowercase and uppercase only

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename pipeline_vlm_model_spec

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* move more argument to options and simplify model init

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add supported_devices

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove not-needed function

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* exclude minimal_vlm

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* missing file

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add message for transformers version

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename to specs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use module import and remove MLX from non-darwin

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove hf_vlm_model and add extra_generation_args

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use single HF VLM model class

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove torch type

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add docs for vision models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-02 17:01:06 +02:00

249 lines
10 KiB
Python

from __future__ import annotations
import logging
from pathlib import Path
from typing import Iterable, Optional, Type
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import TextCell
from docling.datamodel.accelerator_options import AcceleratorOptions
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
OcrOptions,
TesseractOcrOptions,
)
from docling.datamodel.settings import settings
from docling.models.base_ocr_model import BaseOcrModel
from docling.utils.ocr_utils import (
map_tesseract_script,
parse_tesseract_orientation,
tesseract_box_to_bounding_rectangle,
)
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class TesseractOcrModel(BaseOcrModel):
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
options: TesseractOcrOptions,
accelerator_options: AcceleratorOptions,
):
super().__init__(
enabled=enabled,
artifacts_path=artifacts_path,
options=options,
accelerator_options=accelerator_options,
)
self.options: TesseractOcrOptions
self._is_auto: bool = "auto" in self.options.lang
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
self.reader = None
self.script_readers: dict[str, tesserocr.PyTessBaseAPI] = {}
if self.enabled:
install_errmsg = (
"tesserocr is not correctly installed. "
"Please install it via `pip install tesserocr` to use this OCR engine. "
"Note that tesserocr might have to be manually compiled for working with "
"your Tesseract installation. The Docling documentation provides examples for it. "
"Alternatively, Docling has support for other OCR engines. See the documentation: "
"https://docling-project.github.io/docling/installation/"
)
missing_langs_errmsg = (
"tesserocr is not correctly configured. No language models have been detected. "
"Please ensure that the TESSDATA_PREFIX envvar points to tesseract languages dir. "
"You can find more information how to setup other OCR engines in Docling "
"documentation: "
"https://docling-project.github.io/docling/installation/"
)
try:
import tesserocr
except ImportError:
raise ImportError(install_errmsg)
try:
tesseract_version = tesserocr.tesseract_version()
except Exception:
raise ImportError(install_errmsg)
_, self._tesserocr_languages = tesserocr.get_languages()
if not self._tesserocr_languages:
raise ImportError(missing_langs_errmsg)
# Initialize the tesseractAPI
_log.debug("Initializing TesserOCR: %s", tesseract_version)
lang = "+".join(self.options.lang)
if any(lang.startswith("script/") for lang in self._tesserocr_languages):
self.script_prefix = "script/"
else:
self.script_prefix = ""
tesserocr_kwargs = {
"psm": tesserocr.PSM.AUTO,
"init": True,
"oem": tesserocr.OEM.DEFAULT,
}
self.osd_reader = None
if self.options.path is not None:
tesserocr_kwargs["path"] = self.options.path
if lang == "auto":
self.reader = tesserocr.PyTessBaseAPI(**tesserocr_kwargs)
else:
self.reader = tesserocr.PyTessBaseAPI(
**{"lang": lang} | tesserocr_kwargs,
)
self.osd_reader = tesserocr.PyTessBaseAPI(
**{"lang": "osd", "psm": tesserocr.PSM.OSD_ONLY} | tesserocr_kwargs
)
self.reader_RIL = tesserocr.RIL
def __del__(self):
if self.reader is not None:
# Finalize the tesseractAPI
self.reader.End()
for script in self.script_readers:
self.script_readers[script].End()
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page_i, page in enumerate(page_batch):
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
assert self.reader is not None
assert self.osd_reader is not None
assert self._tesserocr_languages is not None
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect_i, ocr_rect in enumerate(ocr_rects):
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
local_reader = self.reader
self.osd_reader.SetImage(high_res_image)
osd = self.osd_reader.DetectOrientationScript()
# No text, or Orientation and Script detection failure
if osd is None:
_log.error(
"OSD failed for doc (doc %s, page: %s, "
"OCR rectangle: %s)",
conv_res.input.file,
page_i,
ocr_rect_i,
)
# Skipping if OSD fail when in auto mode, otherwise proceed
# to OCR in the hope OCR will succeed while OSD failed
if self._is_auto:
continue
doc_orientation = parse_tesseract_orientation(osd["orient_deg"])
if doc_orientation != 0:
high_res_image = high_res_image.rotate(
-doc_orientation, expand=True
)
if self._is_auto:
script = osd["script_name"]
script = map_tesseract_script(script)
lang = f"{self.script_prefix}{script}"
# Check if the detected language is present in the system
if lang not in self._tesserocr_languages:
msg = f"Tesseract detected the script '{script}' and language '{lang}'."
msg += " However this language is not installed in your system and will be ignored."
_log.warning(msg)
else:
if script not in self.script_readers:
import tesserocr
self.script_readers[script] = (
tesserocr.PyTessBaseAPI(
path=self.reader.GetDatapath(),
lang=lang,
psm=tesserocr.PSM.AUTO,
init=True,
oem=tesserocr.OEM.DEFAULT,
)
)
local_reader = self.script_readers[script]
local_reader.SetImage(high_res_image)
boxes = local_reader.GetComponentImages(
self.reader_RIL.TEXTLINE, True
)
cells = []
for ix, (im, box, _, _) in enumerate(boxes):
# Set the area of interest. Tesseract uses Bottom-Left for the origin
local_reader.SetRectangle(
box["x"], box["y"], box["w"], box["h"]
)
# Extract text within the bounding box
text = local_reader.GetUTF8Text().strip()
confidence = local_reader.MeanTextConf()
left, top = box["x"], box["y"]
right = left + box["w"]
bottom = top + box["h"]
bbox = BoundingBox(
l=left,
t=top,
r=right,
b=bottom,
coord_origin=CoordOrigin.TOPLEFT,
)
rect = tesseract_box_to_bounding_rectangle(
bbox,
original_offset=ocr_rect,
scale=self.scale,
orientation=doc_orientation,
im_size=high_res_image.size,
)
cells.append(
TextCell(
index=ix,
text=text,
orig=text,
from_ocr=True,
confidence=confidence,
rect=rect,
)
)
# del high_res_image
all_ocr_cells.extend(cells)
# Post-process the cells
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
# DEBUG code:
if settings.debug.visualize_ocr:
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
yield page
@classmethod
def get_options_type(cls) -> Type[OcrOptions]:
return TesseractOcrOptions