Docling/docling/cli/main.py
Peter W. J. Staar cfdf4cea25
feat: new vlm-models support (#1570)
* feat: adding new vlm-models support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* got microsoft/Phi-4-multimodal-instruct to work

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* working on vlm's

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the VLM part

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* all working, now serious refacgtoring necessary

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring the download_model

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the formulate_prompt

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* pixtral 12b runs via MLX and native transformers

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the VlmPredictionToken

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactoring minimal_vlm_pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the MyPy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added pipeline_model_specializations file

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* need to get Phi4 working again ...

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* finalising last points for vlms support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the pipeline for Phi4

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* streamlining all code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixing the tests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the html backend to the VLM pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the static load_from_doctags

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* restore stable imports

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use AutoModelForVision2Seq for Pixtral and review example (including rename)

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove unused value

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* refactor instances of VLM models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* skip compare example in CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use lowercase and uppercase only

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename pipeline_vlm_model_spec

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* move more argument to options and simplify model init

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add supported_devices

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove not-needed function

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* exclude minimal_vlm

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* missing file

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add message for transformers version

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename to specs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use module import and remove MLX from non-darwin

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove hf_vlm_model and add extra_generation_args

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use single HF VLM model class

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* remove torch type

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add docs for vision models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-06-02 17:01:06 +02:00

644 lines
27 KiB
Python

import importlib
import logging
import platform
import re
import sys
import tempfile
import time
import warnings
from collections.abc import Iterable
from pathlib import Path
from typing import Annotated, Dict, List, Optional, Type
import rich.table
import typer
from docling_core.transforms.serializer.html import (
HTMLDocSerializer,
HTMLOutputStyle,
HTMLParams,
)
from docling_core.transforms.visualizer.layout_visualizer import LayoutVisualizer
from docling_core.types.doc import ImageRefMode
from docling_core.utils.file import resolve_source_to_path
from pydantic import TypeAdapter
from rich.console import Console
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import (
ConversionStatus,
FormatToExtensions,
InputFormat,
OutputFormat,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrOptions,
PaginatedPipelineOptions,
PdfBackend,
PdfPipeline,
PdfPipelineOptions,
TableFormerMode,
VlmPipelineOptions,
)
from docling.datamodel.settings import settings
from docling.datamodel.vlm_model_specs import (
GRANITE_VISION_OLLAMA,
GRANITE_VISION_TRANSFORMERS,
SMOLDOCLING_MLX,
SMOLDOCLING_TRANSFORMERS,
VlmModelType,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling.models.factories import get_ocr_factory
from docling.pipeline.vlm_pipeline import VlmPipeline
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
_log = logging.getLogger(__name__)
console = Console()
err_console = Console(stderr=True)
ocr_factory_internal = get_ocr_factory(allow_external_plugins=False)
ocr_engines_enum_internal = ocr_factory_internal.get_enum()
DOCLING_ASCII_ART = r"""
████ ██████
███░░██░░░░░██████
████████░░░░░░░░████████████
████████░░░░░░░░░░░░░░░░░░████████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░█████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░█████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░ ░░░░░░░██████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░ ░░░░░░░░░░░░░░░ ░░░░░░██████
███▒██░░░░░ ████ ░░░░░░░░░░░░ ████ ░░░░░██▒███
███▒██░░░░░░ ████ ░░░░░░░░░░░░ ████ ░░░░░██▒████
███▒██░░░░░░ ██ ██ ░░░░░░░░░░░░ ██ ██ ░░░░░██▒▒███
███▒███░░░░░ ██ ░░░░████░░░░ ██ ░░░░░██▒▒███
████▒▒██░░░░░░ ░░░███▒▒▒▒███░░░ ░░░░░░░██▒▒████
████▒▒██░░░░░░░░░░░░░░░░░█▒▒▒▒▒▒▒▒▒▒█░░░░░░░░░░░░░░░░███▒▒████
████▒▒▒██░░░░░░░░░░░░█████ ▒▒▒▒▒▒ ██████░░░░░░░░░░░██▒▒▒████
███▒▒▒▒██░░░░░░░░███▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒███░░░░░░░░██▒▒▒▒███
███▒▒▒▒▒███░░░░░░██▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒██░░░░░░███▒▒▒▒▒███
████▒▒▒▒▒████░░░░░░██████████████████████░░░░░░████▒▒▒▒▒████
███▒▒▒▒▒▒▒▒████░░░░░░░░░░░░░░░░░░░░░░░░░░░████▒▒▒▒▒▒▒▒▒███
████▒▒▒▒▒▒▒▒███░░░░░████████████████████████▒▒▒▒▒▒▒▒▒████
████▒▒▒▒▒▒██░░░░░░█ █░░░░░██▒▒▒▒▒▒████
████▒▒▒▒█░░░░░░░█ D O C L I N G █░░░░░░░░██▒▒▒████
████▒▒██░░░░░░█ █░░░░░░░░░░█▒▒████
██████░░░░░░█ D O C L I N G █░░░░░░░░░░░██████
████░░░░░█ █░░░░░░░░░░░░████
█████░░█ D O C L I N G █░░░░░░░░░░░█████
█████ █░░░░░░░░████████
██ D O C L I N G █░░░░░░░░█████
█ █░░░████████
█████████████████████████████
"""
app = typer.Typer(
name="Docling",
no_args_is_help=True,
add_completion=False,
pretty_exceptions_enable=False,
)
def logo_callback(value: bool):
if value:
print(DOCLING_ASCII_ART)
raise typer.Exit()
def version_callback(value: bool):
if value:
docling_version = importlib.metadata.version("docling")
docling_core_version = importlib.metadata.version("docling-core")
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
docling_parse_version = importlib.metadata.version("docling-parse")
platform_str = platform.platform()
py_impl_version = sys.implementation.cache_tag
py_lang_version = platform.python_version()
print(f"Docling version: {docling_version}")
print(f"Docling Core version: {docling_core_version}")
print(f"Docling IBM Models version: {docling_ibm_models_version}")
print(f"Docling Parse version: {docling_parse_version}")
print(f"Python: {py_impl_version} ({py_lang_version})")
print(f"Platform: {platform_str}")
raise typer.Exit()
def show_external_plugins_callback(value: bool):
if value:
ocr_factory_all = get_ocr_factory(allow_external_plugins=True)
table = rich.table.Table(title="Available OCR engines")
table.add_column("Name", justify="right")
table.add_column("Plugin")
table.add_column("Package")
for meta in ocr_factory_all.registered_meta.values():
if not meta.module.startswith("docling."):
table.add_row(
f"[bold]{meta.kind}[/bold]",
meta.plugin_name,
meta.module.split(".")[0],
)
rich.print(table)
raise typer.Exit()
def export_documents(
conv_results: Iterable[ConversionResult],
output_dir: Path,
export_json: bool,
export_html: bool,
export_html_split_page: bool,
show_layout: bool,
export_md: bool,
export_txt: bool,
export_doctags: bool,
image_export_mode: ImageRefMode,
):
success_count = 0
failure_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
# Export JSON format:
if export_json:
fname = output_dir / f"{doc_filename}.json"
_log.info(f"writing JSON output to {fname}")
conv_res.document.save_as_json(
filename=fname, image_mode=image_export_mode
)
# Export HTML format:
if export_html:
fname = output_dir / f"{doc_filename}.html"
_log.info(f"writing HTML output to {fname}")
conv_res.document.save_as_html(
filename=fname, image_mode=image_export_mode, split_page_view=False
)
# Export HTML format:
if export_html_split_page:
fname = output_dir / f"{doc_filename}.html"
_log.info(f"writing HTML output to {fname}")
if show_layout:
ser = HTMLDocSerializer(
doc=conv_res.document,
params=HTMLParams(
image_mode=image_export_mode,
output_style=HTMLOutputStyle.SPLIT_PAGE,
),
)
visualizer = LayoutVisualizer()
visualizer.params.show_label = False
ser_res = ser.serialize(
visualizer=visualizer,
)
with open(fname, "w") as fw:
fw.write(ser_res.text)
else:
conv_res.document.save_as_html(
filename=fname,
image_mode=image_export_mode,
split_page_view=True,
)
# Export Text format:
if export_txt:
fname = output_dir / f"{doc_filename}.txt"
_log.info(f"writing TXT output to {fname}")
conv_res.document.save_as_markdown(
filename=fname,
strict_text=True,
image_mode=ImageRefMode.PLACEHOLDER,
)
# Export Markdown format:
if export_md:
fname = output_dir / f"{doc_filename}.md"
_log.info(f"writing Markdown output to {fname}")
conv_res.document.save_as_markdown(
filename=fname, image_mode=image_export_mode
)
# Export Document Tags format:
if export_doctags:
fname = output_dir / f"{doc_filename}.doctags"
_log.info(f"writing Doc Tags output to {fname}")
conv_res.document.save_as_document_tokens(filename=fname)
else:
_log.warning(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
)
def _split_list(raw: Optional[str]) -> Optional[List[str]]:
if raw is None:
return None
return re.split(r"[;,]", raw)
@app.command(no_args_is_help=True)
def convert( # noqa: C901
input_sources: Annotated[
List[str],
typer.Argument(
...,
metavar="source",
help="PDF files to convert. Can be local file / directory paths or URL.",
),
],
from_formats: List[InputFormat] = typer.Option(
None,
"--from",
help="Specify input formats to convert from. Defaults to all formats.",
),
to_formats: List[OutputFormat] = typer.Option(
None, "--to", help="Specify output formats. Defaults to Markdown."
),
show_layout: Annotated[
bool,
typer.Option(
...,
help="If enabled, the page images will show the bounding-boxes of the items.",
),
] = False,
headers: str = typer.Option(
None,
"--headers",
help="Specify http request headers used when fetching url input sources in the form of a JSON string",
),
image_export_mode: Annotated[
ImageRefMode,
typer.Option(
...,
help="Image export mode for the document (only in case of JSON, Markdown or HTML). With `placeholder`, only the position of the image is marked in the output. In `embedded` mode, the image is embedded as base64 encoded string. In `referenced` mode, the image is exported in PNG format and referenced from the main exported document.",
),
] = ImageRefMode.EMBEDDED,
pipeline: Annotated[
PdfPipeline,
typer.Option(..., help="Choose the pipeline to process PDF or image files."),
] = PdfPipeline.STANDARD,
vlm_model: Annotated[
VlmModelType,
typer.Option(..., help="Choose the VLM model to use with PDF or image files."),
] = VlmModelType.SMOLDOCLING,
ocr: Annotated[
bool,
typer.Option(
..., help="If enabled, the bitmap content will be processed using OCR."
),
] = True,
force_ocr: Annotated[
bool,
typer.Option(
...,
help="Replace any existing text with OCR generated text over the full content.",
),
] = False,
ocr_engine: Annotated[
str,
typer.Option(
...,
help=(
f"The OCR engine to use. When --allow-external-plugins is *not* set, the available values are: "
f"{', '.join(o.value for o in ocr_engines_enum_internal)}. "
f"Use the option --show-external-plugins to see the options allowed with external plugins."
),
),
] = EasyOcrOptions.kind,
ocr_lang: Annotated[
Optional[str],
typer.Option(
...,
help="Provide a comma-separated list of languages used by the OCR engine. Note that each OCR engine has different values for the language names.",
),
] = None,
pdf_backend: Annotated[
PdfBackend, typer.Option(..., help="The PDF backend to use.")
] = PdfBackend.DLPARSE_V2,
table_mode: Annotated[
TableFormerMode,
typer.Option(..., help="The mode to use in the table structure model."),
] = TableFormerMode.ACCURATE,
enrich_code: Annotated[
bool,
typer.Option(..., help="Enable the code enrichment model in the pipeline."),
] = False,
enrich_formula: Annotated[
bool,
typer.Option(..., help="Enable the formula enrichment model in the pipeline."),
] = False,
enrich_picture_classes: Annotated[
bool,
typer.Option(
...,
help="Enable the picture classification enrichment model in the pipeline.",
),
] = False,
enrich_picture_description: Annotated[
bool,
typer.Option(..., help="Enable the picture description model in the pipeline."),
] = False,
artifacts_path: Annotated[
Optional[Path],
typer.Option(..., help="If provided, the location of the model artifacts."),
] = None,
enable_remote_services: Annotated[
bool,
typer.Option(
..., help="Must be enabled when using models connecting to remote services."
),
] = False,
allow_external_plugins: Annotated[
bool,
typer.Option(
..., help="Must be enabled for loading modules from third-party plugins."
),
] = False,
show_external_plugins: Annotated[
bool,
typer.Option(
...,
help="List the third-party plugins which are available when the option --allow-external-plugins is set.",
callback=show_external_plugins_callback,
is_eager=True,
),
] = False,
abort_on_error: Annotated[
bool,
typer.Option(
...,
"--abort-on-error/--no-abort-on-error",
help="If enabled, the processing will be aborted when the first error is encountered.",
),
] = False,
output: Annotated[
Path, typer.Option(..., help="Output directory where results are saved.")
] = Path("."),
verbose: Annotated[
int,
typer.Option(
"--verbose",
"-v",
count=True,
help="Set the verbosity level. -v for info logging, -vv for debug logging.",
),
] = 0,
debug_visualize_cells: Annotated[
bool,
typer.Option(..., help="Enable debug output which visualizes the PDF cells"),
] = False,
debug_visualize_ocr: Annotated[
bool,
typer.Option(..., help="Enable debug output which visualizes the OCR cells"),
] = False,
debug_visualize_layout: Annotated[
bool,
typer.Option(
..., help="Enable debug output which visualizes the layour clusters"
),
] = False,
debug_visualize_tables: Annotated[
bool,
typer.Option(..., help="Enable debug output which visualizes the table cells"),
] = False,
version: Annotated[
Optional[bool],
typer.Option(
"--version",
callback=version_callback,
is_eager=True,
help="Show version information.",
),
] = None,
document_timeout: Annotated[
Optional[float],
typer.Option(
...,
help="The timeout for processing each document, in seconds.",
),
] = None,
num_threads: Annotated[int, typer.Option(..., help="Number of threads")] = 4,
device: Annotated[
AcceleratorDevice, typer.Option(..., help="Accelerator device")
] = AcceleratorDevice.AUTO,
docling_logo: Annotated[
Optional[bool],
typer.Option(
"--logo", callback=logo_callback, is_eager=True, help="Docling logo"
),
] = None,
):
if verbose == 0:
logging.basicConfig(level=logging.WARNING)
elif verbose == 1:
logging.basicConfig(level=logging.INFO)
else:
logging.basicConfig(level=logging.DEBUG)
settings.debug.visualize_cells = debug_visualize_cells
settings.debug.visualize_layout = debug_visualize_layout
settings.debug.visualize_tables = debug_visualize_tables
settings.debug.visualize_ocr = debug_visualize_ocr
if from_formats is None:
from_formats = list(InputFormat)
parsed_headers: Optional[Dict[str, str]] = None
if headers is not None:
headers_t = TypeAdapter(Dict[str, str])
parsed_headers = headers_t.validate_json(headers)
with tempfile.TemporaryDirectory() as tempdir:
input_doc_paths: List[Path] = []
for src in input_sources:
try:
# check if we can fetch some remote url
source = resolve_source_to_path(
source=src, headers=parsed_headers, workdir=Path(tempdir)
)
input_doc_paths.append(source)
except FileNotFoundError:
err_console.print(
f"[red]Error: The input file {src} does not exist.[/red]"
)
raise typer.Abort()
except IsADirectoryError:
# if the input matches to a file or a folder
try:
local_path = TypeAdapter(Path).validate_python(src)
if local_path.exists() and local_path.is_dir():
for fmt in from_formats:
for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(
list(local_path.glob(f"**/*.{ext}"))
)
input_doc_paths.extend(
list(local_path.glob(f"**/*.{ext.upper()}"))
)
elif local_path.exists():
input_doc_paths.append(local_path)
else:
err_console.print(
f"[red]Error: The input file {src} does not exist.[/red]"
)
raise typer.Abort()
except Exception as err:
err_console.print(f"[red]Error: Cannot read the input {src}.[/red]")
_log.info(err) # will print more details if verbose is activated
raise typer.Abort()
if to_formats is None:
to_formats = [OutputFormat.MARKDOWN]
export_json = OutputFormat.JSON in to_formats
export_html = OutputFormat.HTML in to_formats
export_html_split_page = OutputFormat.HTML_SPLIT_PAGE in to_formats
export_md = OutputFormat.MARKDOWN in to_formats
export_txt = OutputFormat.TEXT in to_formats
export_doctags = OutputFormat.DOCTAGS in to_formats
ocr_factory = get_ocr_factory(allow_external_plugins=allow_external_plugins)
ocr_options: OcrOptions = ocr_factory.create_options( # type: ignore
kind=ocr_engine,
force_full_page_ocr=force_ocr,
)
ocr_lang_list = _split_list(ocr_lang)
if ocr_lang_list is not None:
ocr_options.lang = ocr_lang_list
accelerator_options = AcceleratorOptions(num_threads=num_threads, device=device)
pipeline_options: PaginatedPipelineOptions
if pipeline == PdfPipeline.STANDARD:
pipeline_options = PdfPipelineOptions(
allow_external_plugins=allow_external_plugins,
enable_remote_services=enable_remote_services,
accelerator_options=accelerator_options,
do_ocr=ocr,
ocr_options=ocr_options,
do_table_structure=True,
do_code_enrichment=enrich_code,
do_formula_enrichment=enrich_formula,
do_picture_description=enrich_picture_description,
do_picture_classification=enrich_picture_classes,
document_timeout=document_timeout,
)
pipeline_options.table_structure_options.do_cell_matching = (
True # do_cell_matching
)
pipeline_options.table_structure_options.mode = table_mode
if image_export_mode != ImageRefMode.PLACEHOLDER:
pipeline_options.generate_page_images = True
pipeline_options.generate_picture_images = (
True # FIXME: to be deprecated in version 3
)
pipeline_options.images_scale = 2
backend: Type[PdfDocumentBackend]
if pdf_backend == PdfBackend.DLPARSE_V1:
backend = DoclingParseDocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V4:
backend = DoclingParseV4DocumentBackend # type: ignore
elif pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend # type: ignore
else:
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
pdf_format_option = PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend, # pdf_backend
)
elif pipeline == PdfPipeline.VLM:
pipeline_options = VlmPipelineOptions(
enable_remote_services=enable_remote_services,
)
if vlm_model == VlmModelType.GRANITE_VISION:
pipeline_options.vlm_options = GRANITE_VISION_TRANSFORMERS
elif vlm_model == VlmModelType.GRANITE_VISION_OLLAMA:
pipeline_options.vlm_options = GRANITE_VISION_OLLAMA
elif vlm_model == VlmModelType.SMOLDOCLING:
pipeline_options.vlm_options = SMOLDOCLING_TRANSFORMERS
if sys.platform == "darwin":
try:
import mlx_vlm
pipeline_options.vlm_options = SMOLDOCLING_MLX
except ImportError:
_log.warning(
"To run SmolDocling faster, please install mlx-vlm:\n"
"pip install mlx-vlm"
)
pdf_format_option = PdfFormatOption(
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
)
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
)
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths, headers=parsed_headers, raises_on_error=abort_on_error
)
output.mkdir(parents=True, exist_ok=True)
export_documents(
conv_results,
output_dir=output,
export_json=export_json,
export_html=export_html,
export_html_split_page=export_html_split_page,
show_layout=show_layout,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
image_export_mode=image_export_mode,
)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
click_app = typer.main.get_command(app)
if __name__ == "__main__":
app()