
* build: Add ollama sdk dependency Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add option plumbing for OllamaVlmOptions in pipeline_options Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Full implementation of OllamaVlmModel Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Connect "granite_vision_ollama" pipeline option to CLI Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * Revert "build: Add ollama sdk dependency" After consideration, we're going to use the generic OpenAI API instead of the Ollama-specific API to avoid duplicate work. This reverts commit bc6b366468cdd66b52540aac9c7d8b584ab48ad0. Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Move OpenAI API call logic into utils.utils This will allow reuse of this logic in a generic VLM model NOTE: There is a subtle change here in the ordering of the text prompt and the image in the call to the OpenAI API. When run against Ollama, this ordering makes a big difference. If the prompt comes before the image, the result is terse and not usable whereas the prompt coming after the image works as expected and matches the non-OpenAI chat API. Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Refactor from Ollama SDK to generic OpenAI API Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Linting, formatting, and bug fixes The one bug fix was in the timeout arg to openai_image_request. Otherwise, this is all style changes to get MyPy and black passing cleanly. Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * remove model from download enum Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * generalize input args for other API providers Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename and refactor Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add example Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * require flag for remote services Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * disable example from CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add examples to docs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
68 lines
2.4 KiB
Python
68 lines
2.4 KiB
Python
from typing import Iterable
|
|
|
|
from docling.datamodel.base_models import Page, VlmPrediction
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import ApiVlmOptions
|
|
from docling.exceptions import OperationNotAllowed
|
|
from docling.models.base_model import BasePageModel
|
|
from docling.utils.api_image_request import api_image_request
|
|
from docling.utils.profiling import TimeRecorder
|
|
|
|
|
|
class ApiVlmModel(BasePageModel):
|
|
|
|
def __init__(
|
|
self,
|
|
enabled: bool,
|
|
enable_remote_services: bool,
|
|
vlm_options: ApiVlmOptions,
|
|
):
|
|
self.enabled = enabled
|
|
self.vlm_options = vlm_options
|
|
if self.enabled:
|
|
if not enable_remote_services:
|
|
raise OperationNotAllowed(
|
|
"Connections to remote services is only allowed when set explicitly. "
|
|
"pipeline_options.enable_remote_services=True, or using the CLI "
|
|
"--enable-remote-services."
|
|
)
|
|
|
|
self.timeout = self.vlm_options.timeout
|
|
self.prompt_content = (
|
|
f"This is a page from a document.\n{self.vlm_options.prompt}"
|
|
)
|
|
self.params = {
|
|
**self.vlm_options.params,
|
|
"temperature": 0,
|
|
}
|
|
|
|
def __call__(
|
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
|
) -> Iterable[Page]:
|
|
for page in page_batch:
|
|
assert page._backend is not None
|
|
if not page._backend.is_valid():
|
|
yield page
|
|
else:
|
|
with TimeRecorder(conv_res, "vlm"):
|
|
assert page.size is not None
|
|
|
|
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
|
assert hi_res_image is not None
|
|
if hi_res_image:
|
|
if hi_res_image.mode != "RGB":
|
|
hi_res_image = hi_res_image.convert("RGB")
|
|
|
|
page_tags = api_image_request(
|
|
image=hi_res_image,
|
|
prompt=self.prompt_content,
|
|
url=self.vlm_options.url,
|
|
timeout=self.timeout,
|
|
headers=self.vlm_options.headers,
|
|
**self.params,
|
|
)
|
|
|
|
page.predictions.vlm_response = VlmPrediction(text=page_tags)
|
|
|
|
yield page
|