Docling/docling/cli/main.py
Gabe Goodhart c605edd8e9
feat: OllamaVlmModel for Granite Vision 3.2 (#1337)
* build: Add ollama sdk dependency

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add option plumbing for OllamaVlmOptions in pipeline_options

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Full implementation of OllamaVlmModel

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Connect "granite_vision_ollama" pipeline option to CLI

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Revert "build: Add ollama sdk dependency"

After consideration, we're going to use the generic OpenAI API instead
of the Ollama-specific API to avoid duplicate work.

This reverts commit bc6b366468cdd66b52540aac9c7d8b584ab48ad0.

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Move OpenAI API call logic into utils.utils

This will allow reuse of this logic in a generic VLM model

NOTE: There is a subtle change here in the ordering of the text prompt and
the image in the call to the OpenAI API. When run against Ollama, this
ordering makes a big difference. If the prompt comes before the image, the
result is terse and not usable whereas the prompt coming after the image
works as expected and matches the non-OpenAI chat API.

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor from Ollama SDK to generic OpenAI API

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Linting, formatting, and bug fixes

The one bug fix was in the timeout arg to openai_image_request. Otherwise,
this is all style changes to get MyPy and black passing cleanly.

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* remove model from download enum

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* generalize input args for other API providers

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename and refactor

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add example

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* require flag for remote services

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* disable example from CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add examples to docs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
2025-04-10 18:03:04 +02:00

603 lines
25 KiB
Python

import importlib
import logging
import platform
import re
import sys
import tempfile
import time
import warnings
from pathlib import Path
from typing import Annotated, Dict, Iterable, List, Optional, Type
import rich.table
import typer
from docling_core.types.doc import ImageRefMode
from docling_core.utils.file import resolve_source_to_path
from pydantic import TypeAdapter
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import (
ConversionStatus,
FormatToExtensions,
InputFormat,
OutputFormat,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
AcceleratorOptions,
EasyOcrOptions,
OcrOptions,
PaginatedPipelineOptions,
PdfBackend,
PdfPipeline,
PdfPipelineOptions,
TableFormerMode,
VlmModelType,
VlmPipelineOptions,
granite_vision_vlm_conversion_options,
granite_vision_vlm_ollama_conversion_options,
smoldocling_vlm_conversion_options,
smoldocling_vlm_mlx_conversion_options,
)
from docling.datamodel.settings import settings
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling.models.factories import get_ocr_factory
from docling.pipeline.vlm_pipeline import VlmPipeline
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
_log = logging.getLogger(__name__)
from rich.console import Console
console = Console()
err_console = Console(stderr=True)
ocr_factory_internal = get_ocr_factory(allow_external_plugins=False)
ocr_engines_enum_internal = ocr_factory_internal.get_enum()
DOCLING_ASCII_ART = r"""
████ ██████
███░░██░░░░░██████
████████░░░░░░░░████████████
████████░░░░░░░░░░░░░░░░░░████████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░█████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░█████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░ ░░░░░░░██████
██████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░██████
██████░░░░░░ ░░░░░░░░░░░░░░░ ░░░░░░██████
███▒██░░░░░ ████ ░░░░░░░░░░░░ ████ ░░░░░██▒███
███▒██░░░░░░ ████ ░░░░░░░░░░░░ ████ ░░░░░██▒████
███▒██░░░░░░ ██ ██ ░░░░░░░░░░░░ ██ ██ ░░░░░██▒▒███
███▒███░░░░░ ██ ░░░░████░░░░ ██ ░░░░░██▒▒███
████▒▒██░░░░░░ ░░░███▒▒▒▒███░░░ ░░░░░░░██▒▒████
████▒▒██░░░░░░░░░░░░░░░░░█▒▒▒▒▒▒▒▒▒▒█░░░░░░░░░░░░░░░░███▒▒████
████▒▒▒██░░░░░░░░░░░░█████ ▒▒▒▒▒▒ ██████░░░░░░░░░░░██▒▒▒████
███▒▒▒▒██░░░░░░░░███▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒███░░░░░░░░██▒▒▒▒███
███▒▒▒▒▒███░░░░░░██▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒██░░░░░░███▒▒▒▒▒███
████▒▒▒▒▒████░░░░░░██████████████████████░░░░░░████▒▒▒▒▒████
███▒▒▒▒▒▒▒▒████░░░░░░░░░░░░░░░░░░░░░░░░░░░████▒▒▒▒▒▒▒▒▒███
████▒▒▒▒▒▒▒▒███░░░░░████████████████████████▒▒▒▒▒▒▒▒▒████
████▒▒▒▒▒▒██░░░░░░█ █░░░░░██▒▒▒▒▒▒████
████▒▒▒▒█░░░░░░░█ D O C L I N G █░░░░░░░░██▒▒▒████
████▒▒██░░░░░░█ █░░░░░░░░░░█▒▒████
██████░░░░░░█ D O C L I N G █░░░░░░░░░░░██████
████░░░░░█ █░░░░░░░░░░░░████
█████░░█ D O C L I N G █░░░░░░░░░░░█████
█████ █░░░░░░░░████████
██ D O C L I N G █░░░░░░░░█████
█ █░░░████████
█████████████████████████████
"""
app = typer.Typer(
name="Docling",
no_args_is_help=True,
add_completion=False,
pretty_exceptions_enable=False,
)
def logo_callback(value: bool):
if value:
print(DOCLING_ASCII_ART)
raise typer.Exit()
def version_callback(value: bool):
if value:
docling_version = importlib.metadata.version("docling")
docling_core_version = importlib.metadata.version("docling-core")
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
docling_parse_version = importlib.metadata.version("docling-parse")
platform_str = platform.platform()
py_impl_version = sys.implementation.cache_tag
py_lang_version = platform.python_version()
print(f"Docling version: {docling_version}")
print(f"Docling Core version: {docling_core_version}")
print(f"Docling IBM Models version: {docling_ibm_models_version}")
print(f"Docling Parse version: {docling_parse_version}")
print(f"Python: {py_impl_version} ({py_lang_version})")
print(f"Platform: {platform_str}")
raise typer.Exit()
def show_external_plugins_callback(value: bool):
if value:
ocr_factory_all = get_ocr_factory(allow_external_plugins=True)
table = rich.table.Table(title="Available OCR engines")
table.add_column("Name", justify="right")
table.add_column("Plugin")
table.add_column("Package")
for meta in ocr_factory_all.registered_meta.values():
if not meta.module.startswith("docling."):
table.add_row(
f"[bold]{meta.kind}[/bold]",
meta.plugin_name,
meta.module.split(".")[0],
)
rich.print(table)
raise typer.Exit()
def export_documents(
conv_results: Iterable[ConversionResult],
output_dir: Path,
export_json: bool,
export_html: bool,
export_md: bool,
export_txt: bool,
export_doctags: bool,
image_export_mode: ImageRefMode,
):
success_count = 0
failure_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
# Export JSON format:
if export_json:
fname = output_dir / f"{doc_filename}.json"
_log.info(f"writing JSON output to {fname}")
conv_res.document.save_as_json(
filename=fname, image_mode=image_export_mode
)
# Export HTML format:
if export_html:
fname = output_dir / f"{doc_filename}.html"
_log.info(f"writing HTML output to {fname}")
conv_res.document.save_as_html(
filename=fname, image_mode=image_export_mode
)
# Export Text format:
if export_txt:
fname = output_dir / f"{doc_filename}.txt"
_log.info(f"writing TXT output to {fname}")
conv_res.document.save_as_markdown(
filename=fname,
strict_text=True,
image_mode=ImageRefMode.PLACEHOLDER,
)
# Export Markdown format:
if export_md:
fname = output_dir / f"{doc_filename}.md"
_log.info(f"writing Markdown output to {fname}")
conv_res.document.save_as_markdown(
filename=fname, image_mode=image_export_mode
)
# Export Document Tags format:
if export_doctags:
fname = output_dir / f"{doc_filename}.doctags"
_log.info(f"writing Doc Tags output to {fname}")
conv_res.document.save_as_document_tokens(filename=fname)
else:
_log.warning(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
)
def _split_list(raw: Optional[str]) -> Optional[List[str]]:
if raw is None:
return None
return re.split(r"[;,]", raw)
@app.command(no_args_is_help=True)
def convert(
input_sources: Annotated[
List[str],
typer.Argument(
...,
metavar="source",
help="PDF files to convert. Can be local file / directory paths or URL.",
),
],
from_formats: List[InputFormat] = typer.Option(
None,
"--from",
help="Specify input formats to convert from. Defaults to all formats.",
),
to_formats: List[OutputFormat] = typer.Option(
None, "--to", help="Specify output formats. Defaults to Markdown."
),
headers: str = typer.Option(
None,
"--headers",
help="Specify http request headers used when fetching url input sources in the form of a JSON string",
),
image_export_mode: Annotated[
ImageRefMode,
typer.Option(
...,
help="Image export mode for the document (only in case of JSON, Markdown or HTML). With `placeholder`, only the position of the image is marked in the output. In `embedded` mode, the image is embedded as base64 encoded string. In `referenced` mode, the image is exported in PNG format and referenced from the main exported document.",
),
] = ImageRefMode.EMBEDDED,
pipeline: Annotated[
PdfPipeline,
typer.Option(..., help="Choose the pipeline to process PDF or image files."),
] = PdfPipeline.STANDARD,
vlm_model: Annotated[
VlmModelType,
typer.Option(..., help="Choose the VLM model to use with PDF or image files."),
] = VlmModelType.SMOLDOCLING,
ocr: Annotated[
bool,
typer.Option(
..., help="If enabled, the bitmap content will be processed using OCR."
),
] = True,
force_ocr: Annotated[
bool,
typer.Option(
...,
help="Replace any existing text with OCR generated text over the full content.",
),
] = False,
ocr_engine: Annotated[
str,
typer.Option(
...,
help=(
f"The OCR engine to use. When --allow-external-plugins is *not* set, the available values are: "
f"{', '.join((o.value for o in ocr_engines_enum_internal))}. "
f"Use the option --show-external-plugins to see the options allowed with external plugins."
),
),
] = EasyOcrOptions.kind,
ocr_lang: Annotated[
Optional[str],
typer.Option(
...,
help="Provide a comma-separated list of languages used by the OCR engine. Note that each OCR engine has different values for the language names.",
),
] = None,
pdf_backend: Annotated[
PdfBackend, typer.Option(..., help="The PDF backend to use.")
] = PdfBackend.DLPARSE_V2,
table_mode: Annotated[
TableFormerMode,
typer.Option(..., help="The mode to use in the table structure model."),
] = TableFormerMode.ACCURATE,
enrich_code: Annotated[
bool,
typer.Option(..., help="Enable the code enrichment model in the pipeline."),
] = False,
enrich_formula: Annotated[
bool,
typer.Option(..., help="Enable the formula enrichment model in the pipeline."),
] = False,
enrich_picture_classes: Annotated[
bool,
typer.Option(
...,
help="Enable the picture classification enrichment model in the pipeline.",
),
] = False,
enrich_picture_description: Annotated[
bool,
typer.Option(..., help="Enable the picture description model in the pipeline."),
] = False,
artifacts_path: Annotated[
Optional[Path],
typer.Option(..., help="If provided, the location of the model artifacts."),
] = None,
enable_remote_services: Annotated[
bool,
typer.Option(
..., help="Must be enabled when using models connecting to remote services."
),
] = False,
allow_external_plugins: Annotated[
bool,
typer.Option(
..., help="Must be enabled for loading modules from third-party plugins."
),
] = False,
show_external_plugins: Annotated[
bool,
typer.Option(
...,
help="List the third-party plugins which are available when the option --allow-external-plugins is set.",
callback=show_external_plugins_callback,
is_eager=True,
),
] = False,
abort_on_error: Annotated[
bool,
typer.Option(
...,
"--abort-on-error/--no-abort-on-error",
help="If enabled, the processing will be aborted when the first error is encountered.",
),
] = False,
output: Annotated[
Path, typer.Option(..., help="Output directory where results are saved.")
] = Path("."),
verbose: Annotated[
int,
typer.Option(
"--verbose",
"-v",
count=True,
help="Set the verbosity level. -v for info logging, -vv for debug logging.",
),
] = 0,
debug_visualize_cells: Annotated[
bool,
typer.Option(..., help="Enable debug output which visualizes the PDF cells"),
] = False,
debug_visualize_ocr: Annotated[
bool,
typer.Option(..., help="Enable debug output which visualizes the OCR cells"),
] = False,
debug_visualize_layout: Annotated[
bool,
typer.Option(
..., help="Enable debug output which visualizes the layour clusters"
),
] = False,
debug_visualize_tables: Annotated[
bool,
typer.Option(..., help="Enable debug output which visualizes the table cells"),
] = False,
version: Annotated[
Optional[bool],
typer.Option(
"--version",
callback=version_callback,
is_eager=True,
help="Show version information.",
),
] = None,
document_timeout: Annotated[
Optional[float],
typer.Option(
...,
help="The timeout for processing each document, in seconds.",
),
] = None,
num_threads: Annotated[int, typer.Option(..., help="Number of threads")] = 4,
device: Annotated[
AcceleratorDevice, typer.Option(..., help="Accelerator device")
] = AcceleratorDevice.AUTO,
docling_logo: Annotated[
Optional[bool],
typer.Option(
"--logo", callback=logo_callback, is_eager=True, help="Docling logo"
),
] = None,
):
if verbose == 0:
logging.basicConfig(level=logging.WARNING)
elif verbose == 1:
logging.basicConfig(level=logging.INFO)
elif verbose == 2:
logging.basicConfig(level=logging.DEBUG)
settings.debug.visualize_cells = debug_visualize_cells
settings.debug.visualize_layout = debug_visualize_layout
settings.debug.visualize_tables = debug_visualize_tables
settings.debug.visualize_ocr = debug_visualize_ocr
if from_formats is None:
from_formats = [e for e in InputFormat]
parsed_headers: Optional[Dict[str, str]] = None
if headers is not None:
headers_t = TypeAdapter(Dict[str, str])
parsed_headers = headers_t.validate_json(headers)
with tempfile.TemporaryDirectory() as tempdir:
input_doc_paths: List[Path] = []
for src in input_sources:
try:
# check if we can fetch some remote url
source = resolve_source_to_path(
source=src, headers=parsed_headers, workdir=Path(tempdir)
)
input_doc_paths.append(source)
except FileNotFoundError:
err_console.print(
f"[red]Error: The input file {src} does not exist.[/red]"
)
raise typer.Abort()
except IsADirectoryError:
# if the input matches to a file or a folder
try:
local_path = TypeAdapter(Path).validate_python(src)
if local_path.exists() and local_path.is_dir():
for fmt in from_formats:
for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(
list(local_path.glob(f"**/*.{ext}"))
)
input_doc_paths.extend(
list(local_path.glob(f"**/*.{ext.upper()}"))
)
elif local_path.exists():
input_doc_paths.append(local_path)
else:
err_console.print(
f"[red]Error: The input file {src} does not exist.[/red]"
)
raise typer.Abort()
except Exception as err:
err_console.print(f"[red]Error: Cannot read the input {src}.[/red]")
_log.info(err) # will print more details if verbose is activated
raise typer.Abort()
if to_formats is None:
to_formats = [OutputFormat.MARKDOWN]
export_json = OutputFormat.JSON in to_formats
export_html = OutputFormat.HTML in to_formats
export_md = OutputFormat.MARKDOWN in to_formats
export_txt = OutputFormat.TEXT in to_formats
export_doctags = OutputFormat.DOCTAGS in to_formats
ocr_factory = get_ocr_factory(allow_external_plugins=allow_external_plugins)
ocr_options: OcrOptions = ocr_factory.create_options( # type: ignore
kind=ocr_engine,
force_full_page_ocr=force_ocr,
)
ocr_lang_list = _split_list(ocr_lang)
if ocr_lang_list is not None:
ocr_options.lang = ocr_lang_list
accelerator_options = AcceleratorOptions(num_threads=num_threads, device=device)
pipeline_options: PaginatedPipelineOptions
if pipeline == PdfPipeline.STANDARD:
pipeline_options = PdfPipelineOptions(
allow_external_plugins=allow_external_plugins,
enable_remote_services=enable_remote_services,
accelerator_options=accelerator_options,
do_ocr=ocr,
ocr_options=ocr_options,
do_table_structure=True,
do_code_enrichment=enrich_code,
do_formula_enrichment=enrich_formula,
do_picture_description=enrich_picture_description,
do_picture_classification=enrich_picture_classes,
document_timeout=document_timeout,
)
pipeline_options.table_structure_options.do_cell_matching = (
True # do_cell_matching
)
pipeline_options.table_structure_options.mode = table_mode
if image_export_mode != ImageRefMode.PLACEHOLDER:
pipeline_options.generate_page_images = True
pipeline_options.generate_picture_images = (
True # FIXME: to be deprecated in verson 3
)
pipeline_options.images_scale = 2
backend: Type[PdfDocumentBackend]
if pdf_backend == PdfBackend.DLPARSE_V1:
backend = DoclingParseDocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V4:
backend = DoclingParseV4DocumentBackend # type: ignore
elif pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend # type: ignore
else:
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
pdf_format_option = PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend, # pdf_backend
)
elif pipeline == PdfPipeline.VLM:
pipeline_options = VlmPipelineOptions(
enable_remote_services=enable_remote_services,
)
if vlm_model == VlmModelType.GRANITE_VISION:
pipeline_options.vlm_options = granite_vision_vlm_conversion_options
elif vlm_model == VlmModelType.GRANITE_VISION_OLLAMA:
pipeline_options.vlm_options = (
granite_vision_vlm_ollama_conversion_options
)
elif vlm_model == VlmModelType.SMOLDOCLING:
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
if sys.platform == "darwin":
try:
import mlx_vlm
pipeline_options.vlm_options = (
smoldocling_vlm_mlx_conversion_options
)
except ImportError:
_log.warning(
"To run SmolDocling faster, please install mlx-vlm:\n"
"pip install mlx-vlm"
)
pdf_format_option = PdfFormatOption(
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
)
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
)
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths, headers=parsed_headers, raises_on_error=abort_on_error
)
output.mkdir(parents=True, exist_ok=True)
export_documents(
conv_results,
output_dir=output,
export_json=export_json,
export_html=export_html,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
image_export_mode=image_export_mode,
)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
click_app = typer.main.get_command(app)
if __name__ == "__main__":
app()