
Specify encoding when writing output file to avoid errors when default target encoding doesn't have all characters. utf8 seems like the most universal and supported encoding. Otherwise, the cli fails with encoding errors when input file contains unicode text (basically most files nowadays) and the target system has default encoding set to some one-byte charset like cp1252 Signed-off-by: Johnny Salazar <cepera.ang@gmail.com>
255 lines
7.9 KiB
Python
255 lines
7.9 KiB
Python
import importlib
|
|
import json
|
|
import logging
|
|
import time
|
|
import warnings
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Annotated, Dict, Iterable, List, Optional
|
|
|
|
import typer
|
|
from docling_core.utils.file import resolve_file_source
|
|
|
|
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
|
from docling.datamodel.base_models import (
|
|
ConversionStatus,
|
|
FormatToExtensions,
|
|
InputFormat,
|
|
OutputFormat,
|
|
)
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import (
|
|
EasyOcrOptions,
|
|
OcrOptions,
|
|
PdfPipelineOptions,
|
|
TesseractCliOcrOptions,
|
|
TesseractOcrOptions,
|
|
)
|
|
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
|
|
|
|
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
|
|
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
|
|
|
|
_log = logging.getLogger(__name__)
|
|
from rich.console import Console
|
|
|
|
err_console = Console(stderr=True)
|
|
|
|
|
|
app = typer.Typer(
|
|
name="Docling",
|
|
no_args_is_help=True,
|
|
add_completion=False,
|
|
pretty_exceptions_enable=False,
|
|
)
|
|
|
|
|
|
def version_callback(value: bool):
|
|
if value:
|
|
docling_version = importlib.metadata.version("docling")
|
|
docling_core_version = importlib.metadata.version("docling-core")
|
|
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
|
|
docling_parse_version = importlib.metadata.version("docling-parse")
|
|
print(f"Docling version: {docling_version}")
|
|
print(f"Docling Core version: {docling_core_version}")
|
|
print(f"Docling IBM Models version: {docling_ibm_models_version}")
|
|
print(f"Docling Parse version: {docling_parse_version}")
|
|
raise typer.Exit()
|
|
|
|
|
|
# Define an enum for the backend options
|
|
class Backend(str, Enum):
|
|
PYPDFIUM2 = "pypdfium2"
|
|
DOCLING = "docling"
|
|
|
|
|
|
# Define an enum for the ocr engines
|
|
class OcrEngine(str, Enum):
|
|
EASYOCR = "easyocr"
|
|
TESSERACT_CLI = "tesseract_cli"
|
|
TESSERACT = "tesseract"
|
|
|
|
|
|
def export_documents(
|
|
conv_results: Iterable[ConversionResult],
|
|
output_dir: Path,
|
|
export_json: bool,
|
|
export_md: bool,
|
|
export_txt: bool,
|
|
export_doctags: bool,
|
|
):
|
|
|
|
success_count = 0
|
|
failure_count = 0
|
|
|
|
for conv_res in conv_results:
|
|
if conv_res.status == ConversionStatus.SUCCESS:
|
|
success_count += 1
|
|
doc_filename = conv_res.input.file.stem
|
|
|
|
# Export Deep Search document JSON format:
|
|
if export_json:
|
|
fname = output_dir / f"{doc_filename}.json"
|
|
with fname.open("w", encoding="utf8") as fp:
|
|
_log.info(f"writing JSON output to {fname}")
|
|
fp.write(json.dumps(conv_res.document.export_to_dict()))
|
|
|
|
# Export Text format:
|
|
if export_txt:
|
|
fname = output_dir / f"{doc_filename}.txt"
|
|
with fname.open("w", encoding="utf8") as fp:
|
|
_log.info(f"writing Text output to {fname}")
|
|
fp.write(conv_res.document.export_to_markdown(strict_text=True))
|
|
|
|
# Export Markdown format:
|
|
if export_md:
|
|
fname = output_dir / f"{doc_filename}.md"
|
|
with fname.open("w", encoding="utf8") as fp:
|
|
_log.info(f"writing Markdown output to {fname}")
|
|
fp.write(conv_res.document.export_to_markdown())
|
|
|
|
# Export Document Tags format:
|
|
if export_doctags:
|
|
fname = output_dir / f"{doc_filename}.doctags"
|
|
with fname.open("w", encoding="utf8") as fp:
|
|
_log.info(f"writing Doc Tags output to {fname}")
|
|
fp.write(conv_res.document.export_to_document_tokens())
|
|
|
|
else:
|
|
_log.warning(f"Document {conv_res.input.file} failed to convert.")
|
|
failure_count += 1
|
|
|
|
_log.info(
|
|
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
|
|
)
|
|
|
|
|
|
@app.command(no_args_is_help=True)
|
|
def convert(
|
|
input_sources: Annotated[
|
|
List[str],
|
|
typer.Argument(
|
|
...,
|
|
metavar="source",
|
|
help="PDF files to convert. Can be local file / directory paths or URL.",
|
|
),
|
|
],
|
|
from_formats: List[InputFormat] = typer.Option(
|
|
None,
|
|
"--from",
|
|
help="Specify input formats to convert from. Defaults to all formats.",
|
|
),
|
|
to_formats: List[OutputFormat] = typer.Option(
|
|
None, "--to", help="Specify output formats. Defaults to Markdown."
|
|
),
|
|
ocr: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
..., help="If enabled, the bitmap content will be processed using OCR."
|
|
),
|
|
] = True,
|
|
ocr_engine: Annotated[
|
|
OcrEngine, typer.Option(..., help="The OCR engine to use.")
|
|
] = OcrEngine.EASYOCR,
|
|
abort_on_error: Annotated[
|
|
bool,
|
|
typer.Option(
|
|
...,
|
|
"--abort-on-error/--no-abort-on-error",
|
|
help="If enabled, the bitmap content will be processed using OCR.",
|
|
),
|
|
] = False,
|
|
output: Annotated[
|
|
Path, typer.Option(..., help="Output directory where results are saved.")
|
|
] = Path("."),
|
|
version: Annotated[
|
|
Optional[bool],
|
|
typer.Option(
|
|
"--version",
|
|
callback=version_callback,
|
|
is_eager=True,
|
|
help="Show version information.",
|
|
),
|
|
] = None,
|
|
):
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
if from_formats is None:
|
|
from_formats = [e for e in InputFormat]
|
|
|
|
input_doc_paths: List[Path] = []
|
|
for src in input_sources:
|
|
source = resolve_file_source(source=src)
|
|
if not source.exists():
|
|
err_console.print(
|
|
f"[red]Error: The input file {source} does not exist.[/red]"
|
|
)
|
|
raise typer.Abort()
|
|
elif source.is_dir():
|
|
for fmt in from_formats:
|
|
for ext in FormatToExtensions[fmt]:
|
|
input_doc_paths.extend(list(source.glob(f"**/*.{ext}")))
|
|
input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}")))
|
|
else:
|
|
input_doc_paths.append(source)
|
|
|
|
if to_formats is None:
|
|
to_formats = [OutputFormat.MARKDOWN]
|
|
|
|
export_json = OutputFormat.JSON in to_formats
|
|
export_md = OutputFormat.MARKDOWN in to_formats
|
|
export_txt = OutputFormat.TEXT in to_formats
|
|
export_doctags = OutputFormat.DOCTAGS in to_formats
|
|
|
|
match ocr_engine:
|
|
case OcrEngine.EASYOCR:
|
|
ocr_options: OcrOptions = EasyOcrOptions()
|
|
case OcrEngine.TESSERACT_CLI:
|
|
ocr_options = TesseractCliOcrOptions()
|
|
case OcrEngine.TESSERACT:
|
|
ocr_options = TesseractOcrOptions()
|
|
case _:
|
|
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")
|
|
|
|
pipeline_options = PdfPipelineOptions(
|
|
do_ocr=ocr,
|
|
ocr_options=ocr_options,
|
|
do_table_structure=True,
|
|
)
|
|
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
|
|
|
|
format_options: Dict[InputFormat, FormatOption] = {
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_options=pipeline_options,
|
|
backend=DoclingParseDocumentBackend, # pdf_backend
|
|
)
|
|
}
|
|
doc_converter = DocumentConverter(
|
|
allowed_formats=from_formats,
|
|
format_options=format_options,
|
|
)
|
|
|
|
start_time = time.time()
|
|
|
|
conv_results = doc_converter.convert_all(
|
|
input_doc_paths, raises_on_error=abort_on_error
|
|
)
|
|
|
|
output.mkdir(parents=True, exist_ok=True)
|
|
export_documents(
|
|
conv_results,
|
|
output_dir=output,
|
|
export_json=export_json,
|
|
export_md=export_md,
|
|
export_txt=export_txt,
|
|
export_doctags=export_doctags,
|
|
)
|
|
|
|
end_time = time.time() - start_time
|
|
|
|
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app()
|