Docling/examples/custom_convert.py
Michele Dolfi 9550db8e64
docs: improve examples (#27)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2024-08-07 17:16:35 +02:00

126 lines
3.9 KiB
Python

import json
import logging
import time
from pathlib import Path
from typing import Iterable
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
from docling.datamodel.document import ConvertedDocument, DocumentConversionInput
from docling.document_converter import DocumentConverter
_log = logging.getLogger(__name__)
def export_documents(
converted_docs: Iterable[ConvertedDocument],
output_dir: Path,
):
output_dir.mkdir(parents=True, exist_ok=True)
success_count = 0
failure_count = 0
for doc in converted_docs:
if doc.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = doc.input.file.stem
# Export Deep Search document JSON format:
with (output_dir / f"{doc_filename}.json").open("w") as fp:
fp.write(json.dumps(doc.render_as_dict()))
# Export Markdown format:
with (output_dir / f"{doc_filename}.md").open("w") as fp:
fp.write(doc.render_as_markdown())
else:
_log.info(f"Document {doc.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
)
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./test/data/2206.01062.pdf"),
Path("./test/data/2203.01017v2.pdf"),
Path("./test/data/2305.03393v1.pdf"),
]
###########################################################################
# The following sections contain a combination of PipelineOptions
# and PDF Backends for various configurations.
# Uncomment one section at the time to see the differences in the output.
# PyPdfium without OCR
# --------------------
# pipeline_options = PipelineOptions()
# pipeline_options.do_ocr=False
# pipeline_options.do_table_structure=True
# pipeline_options.table_structure_options.do_cell_matching = False
# doc_converter = DocumentConverter(
# pipeline_options=pipeline_options,
# pdf_backend=PyPdfiumDocumentBackend,
# )
# PyPdfium with OCR
# -----------------
# pipeline_options = PipelineOptions()
# pipeline_options.do_ocr=False
# pipeline_options.do_table_structure=True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# pipeline_options=pipeline_options,
# pdf_backend=PyPdfiumDocumentBackend,
# )
# Docling Parse without OCR
# -------------------------
pipeline_options = PipelineOptions()
pipeline_options.do_ocr = False
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
doc_converter = DocumentConverter(
pipeline_options=pipeline_options,
pdf_backend=DoclingParseDocumentBackend,
)
# Docling Parse with OCR
# ----------------------
# pipeline_options = PipelineOptions()
# pipeline_options.do_ocr=True
# pipeline_options.do_table_structure=True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# pipeline_options=pipeline_options,
# pdf_backend=DoclingParseDocumentBackend,
# )
###########################################################################
# Define input files
input = DocumentConversionInput.from_paths(input_doc_paths)
start_time = time.time()
converted_docs = doc_converter.convert(input)
export_documents(converted_docs, output_dir=Path("./scratch"))
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if __name__ == "__main__":
main()