Docling/docling/datamodel/base_models.py
Peter W. J. Staar 926dfd29d5
feat: added excel backend (#334)
* feat: added excel backend

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* first msexcel backend

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added tooling for the cli

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* first working version for excel parsing of tables

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added proper typing for mypy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added proper typing for mypy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* refactor EXCEL to XLSX

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added the unit tests

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* ran poetry lock

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* adding images to output [WIP]

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the mypy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated the msexcel

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated the msexcel (2)

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the mypy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added tests for merged cells in excel

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
2024-11-19 12:21:17 +01:00

217 lines
5.4 KiB
Python

from enum import Enum, auto
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from docling_core.types.doc import (
BoundingBox,
DocItemLabel,
PictureDataType,
Size,
TableCell,
)
from PIL.Image import Image
from pydantic import BaseModel, ConfigDict
if TYPE_CHECKING:
from docling.backend.pdf_backend import PdfPageBackend
class ConversionStatus(str, Enum):
PENDING = auto()
STARTED = auto()
FAILURE = auto()
SUCCESS = auto()
PARTIAL_SUCCESS = auto()
class InputFormat(str, Enum):
DOCX = "docx"
PPTX = "pptx"
HTML = "html"
IMAGE = "image"
PDF = "pdf"
ASCIIDOC = "asciidoc"
MD = "md"
XLSX = "xlsx"
class OutputFormat(str, Enum):
MARKDOWN = "md"
JSON = "json"
TEXT = "text"
DOCTAGS = "doctags"
FormatToExtensions: Dict[InputFormat, List[str]] = {
InputFormat.DOCX: ["docx", "dotx", "docm", "dotm"],
InputFormat.PPTX: ["pptx", "potx", "ppsx", "pptm", "potm", "ppsm"],
InputFormat.PDF: ["pdf"],
InputFormat.MD: ["md"],
InputFormat.HTML: ["html", "htm", "xhtml"],
InputFormat.IMAGE: ["jpg", "jpeg", "png", "tif", "tiff", "bmp"],
InputFormat.ASCIIDOC: ["adoc", "asciidoc", "asc"],
InputFormat.XLSX: ["xlsx"],
}
FormatToMimeType: Dict[InputFormat, List[str]] = {
InputFormat.DOCX: [
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"application/vnd.openxmlformats-officedocument.wordprocessingml.template",
],
InputFormat.PPTX: [
"application/vnd.openxmlformats-officedocument.presentationml.template",
"application/vnd.openxmlformats-officedocument.presentationml.slideshow",
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
],
InputFormat.HTML: ["text/html", "application/xhtml+xml"],
InputFormat.IMAGE: [
"image/png",
"image/jpeg",
"image/tiff",
"image/gif",
"image/bmp",
],
InputFormat.PDF: ["application/pdf"],
InputFormat.ASCIIDOC: ["text/asciidoc"],
InputFormat.MD: ["text/markdown", "text/x-markdown"],
InputFormat.XLSX: [
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
],
}
MimeTypeToFormat = {
mime: fmt for fmt, mimes in FormatToMimeType.items() for mime in mimes
}
class DocInputType(str, Enum):
PATH = auto()
STREAM = auto()
class DoclingComponentType(str, Enum):
DOCUMENT_BACKEND = auto()
MODEL = auto()
DOC_ASSEMBLER = auto()
class ErrorItem(BaseModel):
component_type: DoclingComponentType
module_name: str
error_message: str
class Cell(BaseModel):
id: int
text: str
bbox: BoundingBox
class OcrCell(Cell):
confidence: float
class Cluster(BaseModel):
id: int
label: DocItemLabel
bbox: BoundingBox
confidence: float = 1.0
cells: List[Cell] = []
class BasePageElement(BaseModel):
label: DocItemLabel
id: int
page_no: int
cluster: Cluster
text: Optional[str] = None
class LayoutPrediction(BaseModel):
clusters: List[Cluster] = []
class Table(BasePageElement):
otsl_seq: List[str]
num_rows: int = 0
num_cols: int = 0
table_cells: List[TableCell]
class TableStructurePrediction(BaseModel):
table_map: Dict[int, Table] = {}
class TextElement(BasePageElement):
text: str
class FigureElement(BasePageElement):
annotations: List[PictureDataType] = []
provenance: Optional[str] = None
predicted_class: Optional[str] = None
confidence: Optional[float] = None
class FigureClassificationPrediction(BaseModel):
figure_count: int = 0
figure_map: Dict[int, FigureElement] = {}
class EquationPrediction(BaseModel):
equation_count: int = 0
equation_map: Dict[int, TextElement] = {}
class PagePredictions(BaseModel):
layout: Optional[LayoutPrediction] = None
tablestructure: Optional[TableStructurePrediction] = None
figures_classification: Optional[FigureClassificationPrediction] = None
equations_prediction: Optional[EquationPrediction] = None
PageElement = Union[TextElement, Table, FigureElement]
class AssembledUnit(BaseModel):
elements: List[PageElement] = []
body: List[PageElement] = []
headers: List[PageElement] = []
class Page(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
page_no: int
# page_hash: Optional[str] = None
size: Optional[Size] = None
cells: List[Cell] = []
predictions: PagePredictions = PagePredictions()
assembled: Optional[AssembledUnit] = None
_backend: Optional["PdfPageBackend"] = (
None # Internal PDF backend. By default it is cleared during assembling.
)
_default_image_scale: float = 1.0 # Default image scale for external usage.
_image_cache: Dict[float, Image] = (
{}
) # Cache of images in different scales. By default it is cleared during assembling.
def get_image(self, scale: float = 1.0) -> Optional[Image]:
if self._backend is None:
return self._image_cache.get(scale, None)
if not scale in self._image_cache:
self._image_cache[scale] = self._backend.get_page_image(scale=scale)
return self._image_cache[scale]
@property
def image(self) -> Optional[Image]:
return self.get_image(scale=self._default_image_scale)
class DocumentStream(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
name: str
stream: BytesIO