Docling/docling/pipeline/vlm_pipeline.py
Maxim Lysak 1c26769785
feat(SmolDocling): Support MLX acceleration in VLM pipeline (#1199)
* Initial implementation to support MLX for VLM pipeline and SmolDocling

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* mlx_model unit

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Add CLI choices for VLM pipeline and model

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Initial implementation to support MLX for VLM pipeline and SmolDocling

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* mlx_model unit

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Add CLI choices for VLM pipeline and model

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Updated minimal vlm pipeline example

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* make vlm_pipeline python3.9 compatible

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixed extract_text_from_backend definition

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated README

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated example

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated documentation

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* corrections in the documentation

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Consmetic changes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
2025-03-19 15:38:54 +01:00

215 lines
8.9 KiB
Python

import logging
import warnings
from io import BytesIO
from pathlib import Path
from typing import List, Optional, Union, cast
# from docling_core.types import DoclingDocument
from docling_core.types.doc import BoundingBox, DocItem, ImageRef, PictureItem, TextItem
from docling_core.types.doc.document import DocTagsDocument
from PIL import Image as PILImage
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.md_backend import MarkdownDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import InputFormat, Page
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import (
InferenceFramework,
ResponseFormat,
VlmPipelineOptions,
)
from docling.datamodel.settings import settings
from docling.models.hf_mlx_model import HuggingFaceMlxModel
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.pipeline.base_pipeline import PaginatedPipeline
from docling.utils.profiling import ProfilingScope, TimeRecorder
_log = logging.getLogger(__name__)
class VlmPipeline(PaginatedPipeline):
def __init__(self, pipeline_options: VlmPipelineOptions):
super().__init__(pipeline_options)
self.keep_backend = True
self.pipeline_options: VlmPipelineOptions
artifacts_path: Optional[Path] = None
if pipeline_options.artifacts_path is not None:
artifacts_path = Path(pipeline_options.artifacts_path).expanduser()
elif settings.artifacts_path is not None:
artifacts_path = Path(settings.artifacts_path).expanduser()
if artifacts_path is not None and not artifacts_path.is_dir():
raise RuntimeError(
f"The value of {artifacts_path=} is not valid. "
"When defined, it must point to a folder containing all models required by the pipeline."
)
# force_backend_text = False - use text that is coming from VLM response
# force_backend_text = True - get text from backend using bounding boxes predicted by SmolDocling doctags
self.force_backend_text = (
pipeline_options.force_backend_text
and pipeline_options.vlm_options.response_format == ResponseFormat.DOCTAGS
)
self.keep_images = self.pipeline_options.generate_page_images
if (
self.pipeline_options.vlm_options.inference_framework
== InferenceFramework.MLX
):
self.build_pipe = [
HuggingFaceMlxModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=self.pipeline_options.vlm_options,
),
]
else:
self.build_pipe = [
HuggingFaceVlmModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=self.pipeline_options.vlm_options,
),
]
self.enrichment_pipe = [
# Other models working on `NodeItem` elements in the DoclingDocument
]
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
with TimeRecorder(conv_res, "page_init"):
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
return page
def extract_text_from_backend(
self, page: Page, bbox: Union[BoundingBox, None]
) -> str:
# Convert bounding box normalized to 0-100 into page coordinates for cropping
text = ""
if bbox:
if page.size:
if page._backend:
text = page._backend.get_text_in_rect(bbox)
return text
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
if (
self.pipeline_options.vlm_options.response_format
== ResponseFormat.DOCTAGS
):
doctags_list = []
image_list = []
for page in conv_res.pages:
predicted_doctags = ""
img = PILImage.new("RGB", (1, 1), "rgb(255,255,255)")
if page.predictions.vlm_response:
predicted_doctags = page.predictions.vlm_response.text
if page.image:
img = page.image
image_list.append(img)
doctags_list.append(predicted_doctags)
doctags_list_c = cast(List[Union[Path, str]], doctags_list)
image_list_c = cast(List[Union[Path, PILImage.Image]], image_list)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs(
doctags_list_c, image_list_c
)
conv_res.document.load_from_doctags(doctags_doc)
# If forced backend text, replace model predicted text with backend one
if page.size:
if self.force_backend_text:
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if (
not isinstance(element, TextItem)
or len(element.prov) == 0
):
continue
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(
page_height=page.size.height * scale
)
)
txt = self.extract_text_from_backend(page, crop_bbox)
element.text = txt
element.orig = txt
elif (
self.pipeline_options.vlm_options.response_format
== ResponseFormat.MARKDOWN
):
conv_res.document = self._turn_md_into_doc(conv_res)
else:
raise RuntimeError(
f"Unsupported VLM response format {self.pipeline_options.vlm_options.response_format}"
)
# Generate images of the requested element types
if self.pipeline_options.generate_picture_images:
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if not isinstance(element, DocItem) or len(element.prov) == 0:
continue
if (
isinstance(element, PictureItem)
and self.pipeline_options.generate_picture_images
):
page_ix = element.prov[0].page_no - 1
page = conv_res.pages[page_ix]
assert page.size is not None
assert page.image is not None
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(page_height=page.size.height * scale)
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(
cropped_im, dpi=int(72 * scale)
)
return conv_res
def _turn_md_into_doc(self, conv_res):
predicted_text = ""
for pg_idx, page in enumerate(conv_res.pages):
if page.predictions.vlm_response:
predicted_text += page.predictions.vlm_response.text + "\n\n"
response_bytes = BytesIO(predicted_text.encode("utf8"))
out_doc = InputDocument(
path_or_stream=response_bytes,
filename=conv_res.input.file.name,
format=InputFormat.MD,
backend=MarkdownDocumentBackend,
)
backend = MarkdownDocumentBackend(
in_doc=out_doc,
path_or_stream=response_bytes,
)
return backend.convert()
@classmethod
def get_default_options(cls) -> VlmPipelineOptions:
return VlmPipelineOptions()
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, PdfDocumentBackend)