Docling/docling/cli/main.py
Christoph Auer 7d3be0edeb
feat!: Docling v2 (#117)
---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maxim Lysak <mly@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
Co-authored-by: Maxim Lysak <mly@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
2024-10-16 21:02:03 +02:00

255 lines
7.8 KiB
Python

import importlib
import json
import logging
import time
import warnings
from enum import Enum
from pathlib import Path
from typing import Annotated, Dict, Iterable, List, Optional
import typer
from docling_core.utils.file import resolve_file_source
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import (
ConversionStatus,
FormatToExtensions,
InputFormat,
OutputFormat,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrOptions,
PdfPipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
_log = logging.getLogger(__name__)
from rich.console import Console
err_console = Console(stderr=True)
app = typer.Typer(
name="Docling",
no_args_is_help=True,
add_completion=False,
pretty_exceptions_enable=False,
)
def version_callback(value: bool):
if value:
docling_version = importlib.metadata.version("docling")
docling_core_version = importlib.metadata.version("docling-core")
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
docling_parse_version = importlib.metadata.version("docling-parse")
print(f"Docling version: {docling_version}")
print(f"Docling Core version: {docling_core_version}")
print(f"Docling IBM Models version: {docling_ibm_models_version}")
print(f"Docling Parse version: {docling_parse_version}")
raise typer.Exit()
# Define an enum for the backend options
class Backend(str, Enum):
PYPDFIUM2 = "pypdfium2"
DOCLING = "docling"
# Define an enum for the ocr engines
class OcrEngine(str, Enum):
EASYOCR = "easyocr"
TESSERACT_CLI = "tesseract_cli"
TESSERACT = "tesseract"
def export_documents(
conv_results: Iterable[ConversionResult],
output_dir: Path,
export_json: bool,
export_md: bool,
export_txt: bool,
export_doctags: bool,
):
success_count = 0
failure_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
# Export Deep Search document JSON format:
if export_json:
fname = output_dir / f"{doc_filename}.json"
with fname.open("w") as fp:
_log.info(f"writing JSON output to {fname}")
fp.write(json.dumps(conv_res.document.export_to_dict()))
# Export Text format:
if export_txt:
fname = output_dir / f"{doc_filename}.txt"
with fname.open("w") as fp:
_log.info(f"writing Text output to {fname}")
fp.write(conv_res.document.export_to_markdown(strict_text=True))
# Export Markdown format:
if export_md:
fname = output_dir / f"{doc_filename}.md"
with fname.open("w") as fp:
_log.info(f"writing Markdown output to {fname}")
fp.write(conv_res.document.export_to_markdown())
# Export Document Tags format:
if export_doctags:
fname = output_dir / f"{doc_filename}.doctags"
with fname.open("w") as fp:
_log.info(f"writing Doc Tags output to {fname}")
fp.write(conv_res.document.export_to_document_tokens())
else:
_log.warning(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
)
@app.command(no_args_is_help=True)
def convert(
input_sources: Annotated[
List[str],
typer.Argument(
...,
metavar="source",
help="PDF files to convert. Can be local file / directory paths or URL.",
),
],
from_formats: List[InputFormat] = typer.Option(
None,
"--from",
help="Specify input formats to convert from. Defaults to all formats.",
),
to_formats: List[OutputFormat] = typer.Option(
None, "--to", help="Specify output formats. Defaults to Markdown."
),
ocr: Annotated[
bool,
typer.Option(
..., help="If enabled, the bitmap content will be processed using OCR."
),
] = True,
ocr_engine: Annotated[
OcrEngine, typer.Option(..., help="The OCR engine to use.")
] = OcrEngine.EASYOCR,
abort_on_error: Annotated[
bool,
typer.Option(
...,
"--abort-on-error/--no-abort-on-error",
help="If enabled, the bitmap content will be processed using OCR.",
),
] = False,
output: Annotated[
Path, typer.Option(..., help="Output directory where results are saved.")
] = Path("."),
version: Annotated[
Optional[bool],
typer.Option(
"--version",
callback=version_callback,
is_eager=True,
help="Show version information.",
),
] = None,
):
logging.basicConfig(level=logging.INFO)
if from_formats is None:
from_formats = [e for e in InputFormat]
input_doc_paths: List[Path] = []
for src in input_sources:
source = resolve_file_source(source=src)
if not source.exists():
err_console.print(
f"[red]Error: The input file {source} does not exist.[/red]"
)
raise typer.Abort()
elif source.is_dir():
for fmt in from_formats:
for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(list(source.glob(f"**/*.{ext}")))
input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}")))
else:
input_doc_paths.append(source)
if to_formats is None:
to_formats = [OutputFormat.MARKDOWN]
export_json = OutputFormat.JSON in to_formats
export_md = OutputFormat.MARKDOWN in to_formats
export_txt = OutputFormat.TEXT in to_formats
export_doctags = OutputFormat.DOCTAGS in to_formats
match ocr_engine:
case OcrEngine.EASYOCR:
ocr_options: OcrOptions = EasyOcrOptions()
case OcrEngine.TESSERACT_CLI:
ocr_options = TesseractCliOcrOptions()
case OcrEngine.TESSERACT:
ocr_options = TesseractOcrOptions()
case _:
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")
pipeline_options = PdfPipelineOptions(
do_ocr=ocr,
ocr_options=ocr_options,
do_table_structure=True,
)
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=DoclingParseDocumentBackend, # pdf_backend
)
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
)
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths, raises_on_error=abort_on_error
)
output.mkdir(parents=True, exist_ok=True)
export_documents(
conv_results,
output_dir=output,
export_json=export_json,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if __name__ == "__main__":
app()